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Abstract

The diminishing of conventional energy sources such as fuel, oil, and coal has

shifted researchers’ focus towards more cost-effective and sustainable energy sources.

The conventional energy sources leave the Carbon footprint and Sulphur contents

in the atmosphere, which are not only harmful to the environment but also to

human health. These issues can be well tackled by the use of renewable energy

sources by producing cleaner energy. One of the cleanest sources of energy is solar

energy. Solar energy in the form of Photovoltaics offers a wide array of benefits

such as having low maintenance cost, no carbon footprint, and being abundant in

nature. As compared to wind, geothermal and tidal energy it is free of geological

constraints.

Over the last several decades, solar energy has emerged as the most preferable

source of renewable energy. Photovoltaic (PV) panels are used to convert solar

energy into electricity. PV systems output depends upon the ambient conditions

such as temperature and irradiance. Drastically changing weather conditions can

affect the PV output. PV system contain multiple PV panels in series and par-

allel combination to meet the energy demand. Under uniform irradiance on all

the panels, PV system have only one global maximum power point (GMPP).

However, under non-uniform irradiance level, that is partial shading condition

(PSC), multiple local maximum power points (LMPPs) but exist only exists one

GMPP. Therefore, the tracking of GMPP is called the maxim power point tracking

(MPPT).

The conventional gradient-based MPPT techniques that are, Perturb and observe,

incremental conductance performs well under uniform irradiance but falls into

the local maxima trap. The meta heuristic optimization algorithm-based MPPT

control techniques are presented in the literature. Oscillation at global maxima,

high tracking time, less efficiency, low tracked power, and high settling time are

the main drawbacks observed in the MPPT techniques. Therefore efficient MPPT

technique for PV system is need to present for extraction of maximum power under

non-uniform operating conditions.



ix

In this work, a novel hybrid grey wolf optimizer sine-cosine algorithm (HGWOSCA)

based MPPT control technique is presented. The proposed technique is compared

with grasshopper optimization (GHO), cuckoo search (CS), particle swarm opti-

mization (PSO), particle swarm optimization with gravitational search (PSOGS)

and perturb and observe (P&O). Less tracking and settling time, zero oscilla-

tions at GMPP, and efficiency enhancement are the improvements observed in the

proposed technique.

The proposed technique shows an efficiency that is greater than 99.95% with less

than 0.5W oscillation at GMPP and 10% to 40% less tracking time. This technique

has also been implemented on a low-cost microcontroller and has been tested on

MPPT technique on a PV emulator hardware implementation, which validates the

superior performance of the proposed MPPT technique.

Keywords: Photovoltaic (PV), Partial Shading Condition (PSC), Meta

Heuristic Algorithms, Hybrid Grey Wolf Optimizer Sine Cosine Algo-

rithm (HGWSOCA), Sparrow Search Optimization (SCA), Statistical

Analysis.
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Chapter 1

Introduction

1.1 Introduction

Energy is the foremost vital acme of human civilization. It plays a principal part in

every single activity of living beings. Within the present day period, the economy,

agribusiness, transportation, communication, and security are all driven by energy

[19]. The fast increment within the human populace and industrialization expo-

nentially expanded the request for energy. This never-ending request has tipped

off the adjustment between conventional energy sources like unrefined oil, gas, and

coal due to the extreme exhaustion of fossil fuels [20].

The demonstrated hydrocarbon saves should not final the conclusion of this cen-

tury. This puts energy security at hazard. The created nations have the most

elevated per capita utility of energy. Developing energy demands may be a huge

indicator of financial advancement and maintainable development in GDP. To meet

the request for energy, increasingly hydrocarbons are being burnt. This burning

of fuel in commercial control plants, transportation, and houses causes the emana-

tion of nursery gasses. The exhaustion of ozone and the rising global temperature

as of now has activated worldwide global warming. The part of renewable energy

assets and the optimized utilization of existing assets could be an essential center

of the scientific community. The primary objective of renewable energy assets is

to make them financially viable. It incorporates the development of unused and

1
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cheap energy assets conjointly expanding the efficiencies of existing innovations to

compete with existing non-renewable energy assets.

The utilization of fossil fuels is an unavoidable issue. Large share of energy is

being supplied by burning nonrenewable fossil fuels. It has activated a severe

impact on the natural balance and could be a major cause of worldwide global

warming. An increment in yearly worldwide temperature, and diseases caused

by carcinogenic contaminations forces nations to work under the standards of the

UN. The measures are being taken to utilize renewable energy sources in all areas

of life. The landmark declarations were undertaken in United Nations Framework

Convention on Climate Change (UNFCCC) to combat climate change in the “21st

Climate Conference” in Paris during the year 2015 [21]. The climate summit in

2019 laid its targets to effectively lock in goals in the Carbon emissions future.

We have been utilizing sun-oriented energy since old times. The beginning of all

the energy on the confront of the Soil is atomic fusion happening on the sun.

From the ripening of crops, solar drying of food, and modern era PVs, Solar ori-

ented energy plays a significant role. PV panels collect and convert Solar into

electrical energy utilizing several key innovative technologies. Its utilization is

predominantly in the fields i.e. Electrical Power generation by photovoltaic, heat-

ing systems, and concentrated solar power plants. The Photo-electric principle

is utilized in PV cells. The heating is achieved by radiation-absorbing materials

that hold heat and exchange it to use indoors. Concentrated solar is the modern

expansion at utility-scale generation with thermoelectric generators for waste heat

recovery.

1.2 PV Cell Technologies

Multiple techniques and methodologies are used to manufacture PV panels. PV

cells are building blocks of PV systems. The cell’s efficiency is highly dependent

upon manufacturing technology. PV fabrication is a sophisticated and complex

technology. The efficiency depends upon the materials and their purity. The

foundries use materials such as mono-crystalline, poly-crystalline, and amorphous
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silicon. The low cost and high power PV cells are the focus of academic research

which is going on.

Figure 1.1: Comparison of the efficiencies of different photovoltaic technologies
in the market [1]

These PV cells have efficiencies of 27.62%, 21.35%, and 13.61% respectively. The

highest efficiency in the lab for thin-film technology. For CIGS and CdTe is 23.4%

and 21.0% respectively [22]. The new high concentration multi-junction solar cells

achieve 47.1% efficiency. The concentrated solar technology can achieve 38.9%

efficiency. Multiple layer cells and multi-junction cells exhibit up to 43% efficiency

[23]. Multi-junction cells are costly to produce. Germanium is used for manu-

facturing which is a rare element. So there is a tradeoff between cost, efficiency,

and power. The largest producers of PV cells are China, Japan, South Korea,

Malaysia, Germany, India, and the USA. Figure 1.1 gives a comparison of PV cell

efficiencies for different technologies. This comparison shows how the efficiencies

of different solar cells varies over the year. The record breaking cell was developed

in 2014 with 46 percent efficiency. The goal is to develop the solar cells which

converts the solar energy into electrical energy with high efficiency. This is really

the challenge for the material scientists to develop these solar cells. So there is a

tradeoff between cost, efficiency, and power. The largest producers of PV cells are

China, Japan, South Korea, Malaysia, Germany, India, and the USA.
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1.3 Photovoltaic System

The energy production capability of the PV system is dependent upon the solar

energy received by that system. Therefore, any kind of shading will reduce energy

production. PV systems can experience shading due to nearby buildings, trees,

cloudy weather, and dust upon them or mountains if panels are installed in the

fields with mountains nearby. In any case, shading will impact the efficiency of the

solar systems. Since solar panels are connected in series, any shading on any panel

will force the PV panels, including the shaded ones, to carry the same current

[24]. Consequently, the shaded panels might get reversed biased and may act as

a source and will draw power which will rapidly minimize the yield of the PV

systems and because of the nonlinear property of PV systems, the P-V & I-V

characteristic curves of PV system shows nonlinear behavior. These I-V & P-V

curves can be generated by varying resistance from zero to infinity. These curves

contain multiple peaks with one global maximum peak.

Figure 1.2: Components of the photovoltaic system contains PV arrays, con-
verter, control technique, and load [2]

PV system comprises PV arrays, DC converter, control, and sensor peripherals as

shown in Figure 1.2. The controlled output of the PV system is adjusted using

current and voltage feedback through sensors. Here MPPT controls the Boost
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converter switching using duty cycle as control variable generated by MPPT tech-

nique. Moreover, a driver circuit is connected to a DC converter whose function-

ality is to compensate for the low power of the microcontroller. To guarantee

smooth enactment of the PV system, MPPT control action needs to be updated

continuously.

There exists a single operating point under certain ambient conditions. That

operating point is known as a maximum power point (MPP) which has a certain

value of current and voltage. This MPP is the point at which the solar panel

operates thus proving the max net power, which brings into account the MPPT

whose aim is towards the harnessing of maximum power. The utilization of MPPT

control in a PV system is an important and efficient method to obtain maximum

output power. PV system presented in Figure 1.2 is usually used to perform

MPPT techniques.

1.4 Conventional Maximum Power Point Track-

ing Techniques

In literature, numerous MPPT techniques have been introduced and every tech-

nique have its own merits and demerits. Some well-known conventional MPPT

techniques include Fractional Short Circuit Current (FSCC), perturb and observe

(P&O) besides with modified P&O, hill climbing (HC), incremental conductance

(IC), modified incremental conductance, and Fractional Open Circuit Voltage

(FOCV) [25]. These techniques are effective and have efficiency under uniform

irradiance but fails under non-uniform irradiance. The major drawbacks of the

conventional MPPT techniques are that they have continuous oscillations and they

lose their tracking direction under variable temperature and climate. Moreover,

these methods might not differentiate between global maxima (GM) and local

maxima (LM). To minimize the said oscillations, steps size needs to be varied,

however little change in the step size slows down the convergence and increases
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the tracking time. This trade-off between convergence and tracking time gives

these algorithms a bad reputation when it comes to partial shading (PS) [26].

Under PS, the output is power severely reduced causing major power loss to the

load.

1.5 Machine Learning based Techniques

With a rise in artificial intelligence (AI), a few AI-based MPPT techniques are

surfacing such as artificial neural networks (ANNs), fuzzy logic (FL), and Neuro-

Fuzzy Hybrid-ANN [27]. AI offers some appropriate solutions to the problems

caused by rapidly changing ambient conditions and climate. Even though these

algorithms are extremely smart and provide very high efficiency in their perfor-

mance, they require a huge amount of data to extensively train them which gives

rise to the cost and computational complexity, and time [28].

1.6 Soft Computing based Techniques

In order to overcome the problems mentioned previously, a meta-heuristic ap-

proach has been adopted [29] i.e. soft computing methods known as bio-inspired al-

gorithms such as particle swarm optimization (PSO), PSO-gravity search (PSOGS),

Ant colony optimization (ACO), cuckoo search (CS), Moth flame optimization

(MFO), grey wolf optimization (GWO), genetic algorithm (GA), dragonfly op-

timization (DFO), Gross Hopper Optimization (GHO) and Pattern Search (PS)

have been proven to be much effective to optimize power. The performance of

these algorithms again depends upon several elements such as computation time,

number of iterations, population size, etc. PSO is an algorithm that provides the

solution to the problem where a point in n-dimensional space may offer a better

solution [30]. This algorithm utilizes several agents, where each agent is respon-

sible for exchanging information that is obtained in a respective process. Here,

each agent is referred to as a particle whose task is to follow another particle that
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is performing best as well as traverse ahead to those conditions that are found

by the particle itself. This causes each particle to evolve to an optimal solution.

However, there is a high probability that PSO particles traverse the same scope

that was searched by the previous particles.

In CS, random values are allocated to Levy flight which causes undesired fluctua-

tions in the control signal [30]. Now, the problem is, the small size of the searching

population can enhance this defect. The computational power and convergence

time at GM will be severely impacted if a sizeable figure of population particles

is resorted to. Similarly, other algorithms provide a solution to the problem of

contingent oscillations around GM. The grasshopper optimization (GHO) effec-

tively tracks GM but there are oscillations due to small decrement in parameter

‘c’. Therefore it causes the power to settle at GM slowly.

Most of the bio-inspired techniques workaround to overcome the problems caused

by PS, and they do locate MPP in uniform or non-uniform cases. However, they

come across some definite issues with respect to PV applications [31]. One of

the problems they encounter is time-varying GM positions on the P-V curves.

The problem is that most of the time they track the first GM and are stuck

there. Another problem faced by these algorithms is that since quite a number

of variables are used in these soft computing techniques, they give rise to random

power oscillations in the steady state. Few bio-inspired MPPT techniques fail to

follow the GM under complex PS and get stuck at LM. This paper will try to solve

these problems using smart and robust techniques.

1.7 Thesis Contribution

Observing all these mentioned shortfalls of existing bio-inspired techniques, a new

meta-heuristic technique HGWOSCA is implemented for tracking MPP in PV

systems. This algorithm utilizes the best features and characteristics of GWO and

SCA. Characteristics of HGWSCA are mentioned as follows:



Introduction 8

� Implementation of Novel Hybrid Grey Wolf Optimizer Sine Cosine Algorithm

(HGWOSCA) based Maximum Power Point Tracking (MPPT) Technique.

� Testing under varying irradiance, Partial Shading Condition (PSC), and es-

pecially in complex-PSC (CPSC).

� Achieves up to 99.9% power tracking efficiency with less than 200 ms tracking

time and less than 300 ms settling time.

� Extracts 10% more energy as compared to competing techniques

1.8 Thesis Overview

Chapter 1 presents the need for renewable energy, the benefits of PV systems, and

the effect of partial shading on the PV system with a basic purpose of maximum

power point tracking techniques presented in the literature.

Chapter 2 of this thesis presents the literature review in which different types of

PV systems equivalent diode models are explained. Afterward, the explanation of

different MPPT techniques, i.e. conventional, intelligent, and swarm intelligence

based, is presented. This chapter also contains an explanation of different types

of DC-DC converters used for MPPT applications. Research gap analysis and

problem statement are highlighted in light of the literature survey.

Chapter 3 is utilized to present the proposed technique with detailed mathemat-

ical modeling. The working of the proposed technique under PSC and CPSC is

elaborated.

Chapter 4 of this thesis work presents the results and discussion section in which

four different scenarios are used for comparison. These four cases are fast varying

irradiance, partial shading condition-1, partial shading condition-2, and complex

partial shading condition. The Comparison is made with Cuckoo search algorithm

(CSA), Grasshopper optimization (GHO), particle swarm optimization with grav-

itational search (PSOGS), and particle swarm optimization (PSO). MPPT rating
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of all competing techniques, statistical analysis, qualitative analysis, and exper-

imental verification is done to highlight the significance of the proposed control

technique.

Chapter 5 presents the conclusion section with the future work. This section

concludes that the proposed technique shows better performance as compared to

the comparing MPPT techniques.

1.9 Chapter Summary

This chapter highlights the quickly changing trends from conventional energy

sources to renewable energy sources. The benefits of PV systems are discussed

and the partial shading (PS) effects on the performance of PV systems are ex-

amined to justify the necessities of sophisticated maximum power point tracking

(MPPT) control technique. The conventional MPPT techniques fail to perform

under PS but intelligent MPPT techniques specially Swarm intelligence (SI) tech-

niques are effective under this multi-solution nonlinear monotonic control problem.

Shortfalls of SI-based techniques in literature are studied and as a solution a novel

hybrid SI-based MPPT technique is presented for extraction of maximum power

under all dynamic operating conditions.



Chapter 2

Literature Review

In this chapter, different models of PV cells are discussed. The single diode model,

double model, and triple diode model are presented in the literature. All the efforts

made to model the PV cell are for the accurate estimation of non-linear P-V and

I-V curves.

The effect of partial shading on the P-V and I-V characteristics curves are exam-

ined. Since the PV panels are made of PN junction, therefore the diode effect

can be seen in I-V curve. PV cell behaves as a constant current source with an

anti-parallel diode to instigate diode effect in I-V curve. This is known as an ideal

model of PV cell. The problem with the ideal model is that it does not account

for the non-linearity due to environmental conditions. So the practical models of

PV cell are explained.

2.1 Single Diode Model

PV panel behaves like a current source when the light falls on it. The current

generator by PV panel on irradiance is photon current (Iph). Ideal diode model is

shown in Figure 2.1. In which there is an anti-parallel diode which is connected

with current source [32]. The output current for the ideal diode model is presented

in Equation 2.1.
10
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I = Ipvh − Io = Ipvh − Is × e

(
V

ηNsVT

)
(2.1)

Where Ipvh is photon current generated due to solar irradiance, Io the diode cur-

rent, Is is a diode saturation current, Ns is the number of series-connected cells,

VT is the thermal voltage.

Figure 2.1: Single diode model of the photovoltaic cell contain anti-parallel
diode, series and shunt resistors [3]

I = Ipvh − Is × exp

(
V +RsI
ηNsVT

)
− V +RsI

Rp
(2.2)

VT =
NsKT

q
(2.3)

Where Rs and Rp are the series and parallel connected resistances, T is the tem-

perature and q is the charge of the electron. V and I are the output voltage and

output current respectively. The ideal diode model does not account for the non-

linearity of the I-V and P-V curves on the curve knee. Therefore, the practical

model is presented in Figure 2.1 which contains the series resistance Rs and shunt

resistance Rp. The mathematical modeling of the practical single diode model is

presented by Equation 2.2. The effect of Rs and Rp can be seen in Equation 2.2.

The single diode model is a very simple design to model I-V and P-V curves of

PV cells. The description of the symbols for the PV cell is presented in Table 2.1.
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Table 2.1: Symbols and description of parameters of the PV cell

Symbol Description

I Current at output of dc-dc converter

V Voltage at output of dc-dc converter

IPV Output current of PV cell

Id Current through diode

Rs Resistance in series of current source

Rp Resistance in parallel of current source

Figure 2.2: Double Diode Model of photovoltaic cell

2.2 Double Diode Model

In literature another model is presented that efficiently model the PV cell is a

double diode model [33]. In this model, two diodes are added in parallel to the

current source as shown in Figure 2.2. For the accurate modeling of the PV cell,

five parameters are needed to be estimated, that is Rs, Rp, Iph, IO1, IO2. The

series/parallel resistances added for practical model, which effect the variation of

output current and voltage. The mathematical model of the double diode model

is presented in Equation 2.4, which shows the relation of output current with the

diode currents. The diode currents are subtracted from the photon current.
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I = Ipvh − IO1 − IO2 (2.4)

Where IO1 and IO2 are the diode currents for diode 1 and diode 2 respectively. Is1

and Is2 are the saturation currents for diode 1 and diode 2 respectively.

2.3 Triple Diode Model

To model the non-linearity of I-V and P-V curves, the triple diode model is pre-

sented in the literature [34]. The current source has three anti-parallel diodes with

series and shunt resistance is the practical triple diode model as shown in Figure

2.3. The mathematical model of the tipple diode model is presented in Equation

2.5. The diode currents are subtratced from the photon current to get the output

current. Practical diode model contains series and parallel resistors to model the

parameters of PV cell.

Figure 2.3: Triple Diode Model of photovoltaic cell [4]

I = Ipvh − IO1 − IO2 − IO3 (2.5)

Where Io3 is the third diode current and Is3 is the third diode saturation current.

Rp is the shunt resistance in the triple diode model. I and V is the output voltage

and current respectively. Rs and Rp are the series and parallel resistances.
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2.4 Characteristic of PV Cell

In this section, I-V and P-V characteristics of the PV cell are discussed. Also, the

effect of dynamic environmental conditions on I-V and P-V curves is discussed. PV

parameters are explained which alter the electrical characteristics of PV system.

2.4.1 I-V and P-V Characteristics

I-V and P-V curves of the PV module with the explanation of the different regions

are shown in Figure 2.4. Since PV cell is made of PN junction and generates

current when the light strikes. I-V curve can be obtained by varying load resistance

at the output of the PV module [35]. First make it short circuit at the output

means load resistance is zero. In this scenario, the maximum current will flow

which is known as short circuit current.

Figure 2.4: IV and PV curve with the elaboration of different regions in the
curves [5]

After that, resistance is modified from zero to maximum value which makes the

output of the panel an open circuit. At this point, we will get zero current but

maximum voltage which is called open-circuit voltage. Clearly, it is seen that the

I-V curve is nothing but the superposition of characteristics of the current source
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and diode at parallel. There are some important regions in I-V and P-V curves

that are:

� Constant current region

� Constant voltage region

� Knee region region

2.4.2 Effect of Series and Parallel Modules

In order to get high power multiple modules are required to be added in series/-

parallel combination in series combination total voltages of the panel increase but

to increase the current, we need to add the PV panels in parallel connection.

Figure 2.5: Series/Parallel connected photovoltaic panels which are under
uniform and non-uniform irradiance causing partial shading condition

The PV modules connected Series and Parallel combination with different operat-

ing conditions are shown in Figure 2.5. The effect of the dynamic environmental

conditions can cause a change in I-V and P-V curves [36]. PV system needs to
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operate at maximum power point even under dynamic environmental conditions,

which is the task of MPPT controller.

2.4.3 Description of PV parameter

There are different parameters that affect the power extraction of PV modules.

The description of these parameters is shown in Figure 2.6. These parameters are

listed and explained below

� Open circuit voltage (Voc): When the output load is infinity then voltage

appears at the load is called Voc open-circuit voltage.

� Short circuit voltage (Isc): When the output load is zero then the current

through the load is maximum called Isc short circuit current.

� Maximum power point (MPPT): The point of operation at which max-

imum power is delivered to the load by PV panel is called maximum power

point. The tracking of this MPP is called maximum power point tracking

(MPPT). MPP is the multiplication of Vmpp and Impp.

� Efficiency (η): the efficiency of PV cell depends upon the properties of

the material. N is the ratio f practical and theoretical power. Therefore it

is highly dependent upon the type of cell. Typically its value is between

9-22%.

The PV module used for the simulation is “SunPower SPR-320E-WHT-D”.

The electrical characteristic of the PV panel is shown in Table 2.2. These

parameters are taken from the PV module in MATLAB 2018a/Simulink.

The maximum power of the PV panel is 320 W. So, combination of 4 panels

will increase the power upto 1280 W. PV panels needs to operate Vmpp and

Impp defined in Table 2.2 under uniform irradiance.
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Table 2.2: Electrical Characteristic of SunPower SPR-320E-WHT-D

Parameters Values

Power at MPP (Pmp) 320 W

Maximum Voltage (Vmpp) 54.7 V

Maximum Current (Impp) 5.49 A

Current at short circuit (Isc) 5.87 A

Voltage at open circuit (Voc) 64 V

Peak Efficiency 19.62%

Figure 2.6: Description of PV parameter in IV and PV curve [6].

2.4.4 Effect of Varying Temperature and Irradiance

At STC, when the temperature is kept constant and variation occurs in the irra-

diance then the change in MPP also occurs as shown in Figure 2.7. However, the

change in irradiance does not significantly affect the voltage but varies the current

as shown in Figure 2.8. Since the power is nothing but the product of voltage
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and current, therefore the change in power is directly proportional to the change

in irradiance. The effect of the irradiance on I-V and P-V curves can be seen in

Figure 2.7 and Figure 2.8, respectively.

Figure 2.7: Effects of different irradiance levels on PV curve under uniform
irradiance condition [7].

Figure 2.8: Effects of different irradiance levels on IV curve under uniform
irradiance condition [7].

The output power of PV module is dependent on irradiance and temperature.

When irradiance is kept constant at STC and temperature increases then the power

of PV panel will decrease [37]. As shown in Figure 2.9. The panel temperature

and power are inversely proportional. From Figure 2.10 it is verified that change

in temperature has a minor effect on current but has a greater impact on voltage.

This change in temperature of changes the MPPT on the PV curve. There the

change in temperature affects the performance of PV module.
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Figure 2.9: Effects of different temperature levels on PV curve under uniform
irradiance condition [7].

Figure 2.10: Effects of different temperature levels on IV curve under uniform
irradiance condition [7].

2.4.5 Effect of Partial Shading Condition

For the large power production, multiple panels are connected in series/parallel

configurations. The 4x1 string of PV modules is shown in Figure 2.5. It is not

possible that every PV module receive an equal amount of irradiance. This in-

tensity level can vary due to nearby building shadow, clouds, and dust, etc. as

shown in Figure 2.5. This effect in PV panels is called partial shading effect. The

module which doesn’t receive equal irradiance becomes least productive, and extra

power is lost in the PV panel which causes the hot spot effect [38]. Due to this,

the PV panel could damage permanently. In order to avoid this, an alternative

path is provided for the current through bypass diode which is parallel with the

PV module. Due to this bypass diode, the IV and PV curves become non-linear

as shown in Figure 2.11 (c). The conventional MPPT techniques cannot extract
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the maximum power from this non-linear behavior. As shown in Figure 2.11 (d).

there is only single global maximum and multiple local peaks. Intelligent MPPT

control techniques are required for the extraction of global maximum power point

(GMPP).

Figure 2.11: (a) IV curve at varying irradiance under uniform condition (b)
PV curve at varying irradiance under uniform condition (c) IV curve under

non-uniform irradiance (d) PV curve under non-uniform irradiance [8].

2.5 PV System and its Components

The standalone PV system as shown in Figure 2.12 consists of these components

[39].

� PV module

� Boost converter (DC-DC converter)

� MPPT control
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Figure 2.12: Components of the photovoltaic system contains PV arrays,
converter, control technique and load [9].

The boost converter behaves as an interface between load and PV panel whose

duty cycle is controlled by the MPPT controller current and voltage sensors are

used to read the PV current and voltage.

These parameters are fed into MPPT controller which calculates PV power using

the product of current and voltage sensor readings. The stabilized output power

depends upon the efficient design of boost converter components, that is, inductor,

capacitors, frequency of switching. The microcontroller generates a PWM signal

given to the MOSFET driver and controls the voltage of the PV panel. The

complete design of the boost converter for the MPPT applications is explained in

the next section.

2.6 DC Boost Converter

DC to DC boost converter acts as an interface because the PV panel generates DC

output and DC power is delivered to the load. Many DC-DC converter topolo-

gies are presented in the literature [40]. For MPPT application, DC-DC boost
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converter is selected. As the name suggests, the output of the voltage converter

is higher than the input voltage. Due to the higher voltage at the output, the

low power is dissipated in the form of heat. The schematic diagram of the boost

converter is shown in Figure 2.13. In this study for the simulation and practical

implementation, a boost converter has been used. Because the resistance of the

boost converter varies directly with the duty cycle. The effect of the duty cycle

change in the output voltage with respect to input voltage is shown in Equation

2.6.

Figure 2.13: Implementation of maximum power point tracking control using
boost converter [9].

D = Ton/Tsw (2.6)

Where D is the duty cycle of the converter, Ton is the ON time of the duty cycle,

Tsw is the switching time also called time period and Toff is the LOW signal time

of the duty cycle.

2.6.1 Mathematical Modeling of Boost Converter

The mathematical modeling of boost converter explains the working and effect of

components design on putout. The output voltage is dependent upon the vari-

ation in duty cycle, which varies between 0-100%. The input capacitor (Cin) is

dependent upon switching frequency and current ripples but the output capacitor

(Cout) depends upon the duty cycle.
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The important component design is the inductor whose value depends upon the

PV voltages [41]. The inductor controls the current ripples at the output. The

design of all the components depends upon the following equations

Cout = (IoD)/(8Vdfsw) (2.7)

L = (VPVD)/(2Idfsw) (2.8)

Where Id and Vd are the ripples of current and voltage. The switching frequency

is represented by fsw and L represents the inductance of the inductor. Vpv is the

input voltage of the converter which is actually the output of PV.

2.7 Boost converter application in MPPT

Since the PV system is different from the conventional energy sources because we

cannot store energy like other sources, such as hydropower, chemical energy, there-

fore continuous extraction of power is required by interfacing DC-DC converter

between panel and resistive load. For the maximum power extraction from the so-

lar module, the maximum power transfer theorem is needed to apply which states

that the maximum power will be delivered to the load if the mismatch between

load resistance and source resistance is zero[33].

Now, if the load resistance at the PV panel is kept at maximum power then

the change in environmental conditions will affect the operating point and the

maximum power will stop delivering to the load. Therefore, the resistance of

the load and boost converter will change in the duty cycle and be maintained at

that value where maximum power is delivered to the load. This load variation

capability provided by the boost converter is very effective.

Therefore, the change in resistance is dependent on the change in duty cycle when

R is kept constant. By any change in the load resistance and environmental

conditions will cater to the MPPT control technique by continuously monitoring

the power of the PV panel.
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The equivalent resistance of boost converter [42] can be calculated using Equation

2.9 presented below:

L = Req = Vo/Io = (V (1−D)2)/Io = R(1−D)2 (2.9)

Req is the equivalent resistance of the converter which is the division of the output

voltage Vo to the output current Io and R is the load resistance.

The design parameters used in this study are presented in Table 2.3.

Table 2.3: Design Parameters of DC Boost Converter

Parameter symbol description value

L Inductor 1.2 mH

Co Output capacitance 70 mF

CIN Input capacitance 70 mF

Dmpp Duty cycle at MPP 0.69 at STC

R Load resistance 50Ω

f Operating frequency 8-10 KHz

2.8 Buck Converter

Another type of DC-DC converter is the buck converter which is also known as a

chopper circuit [43]. The input voltage of this converter is greater than the output

voltage by the relation as presented in Equation 2.10.

Vout = D(Vin) (2.10)

Where Vout is the voltage at output, duty cycle is D and input voltage is Vin. The

basic operation of buck converter is to step down the voltage. In the positive half
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of the cycle, the switch s1 is on, which delivers the current to the load inductor

L but in the negative cycle on only the inductor and the output capacitor deliver

the power to the load. Due to low voltage and high current at the output, the

heat losses rise in this converter. The design of the inductor, input capacitor, and

output capacitor for buck converter depend upon the following Equation2.11 and

Equation 2.12 [44].

Cin = I/(8Vdfsw) (2.11)

Cout = (I −D)/8L(fsw)Nout (2.12)

L = (Vout(1−D))/(fswI) (2.13)

Cin is the input capacitance, Cout is the output capacitance, L is the inductance,

Vout is the output voltage, fsw is the switching frequency, D is the duty cycle.

Figure 2.14: Implementation of maximum power point tracking control using
buck converter [10].

The selection of MOSFET and diode depends upon the voltage and current across

these switches. Figure 2.14 shows the schematic of buck converter. The voltage

and current is the input for the MPPT controller while the output is the duty cycle

fed to the buck converter. Driver circuit is used between the MPPT controller and

swtich to drive the MOSFET. The variation of the duty cycle cause the change in

overall resistance and changes the operating point.
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2.9 Buck-boost Converter

In buck or boost converter, voltages step down or step up at the output. The

technique is presented in which we can step up or step down voltages using only

one circuit is called buck-boost converter [45]. The relation of input and output

voltage with respect to duty cycle is presented in Equation 2.14.

Vout = D/(1−D)(Vin) (2.14)

Where Vout is the voltage at output, duty cycle is D and input voltage is Vin.

For the duty cycle greater than 0.5 the circuit behaves as the boost converter and

the duty cycle less than 0.5, the circuit behaves as buck- converter. One of the

drawback of buck-boost converter is the output voltage is negative as compared

to the buck and boost converter.

Figure 2.15: Implementation of maximum power point tracking control using
buck-boost converter [11].

Cout is the output capacitance, inductor is L, duty cycle is D, switching time is

Tsw, Vout is the output voltage and Vout is the ripple voltage. Figure 2.15 shows

the schematic of buck-boost converter.

For the positive cycle, MOSFET charges the inductor due to reverse biasing of

the diode. For the negative cycle the inductor discharge across the load in the

opposite direction which causes the output to the negative design of inductor,

input capacitor and output capacitor can be done by the following equations.
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Cout = (VoutDTsw)/2Vout (2.15)

L = (VoutDTsw)/2Vout (2.16)

2.10 Cuk Converter

Cuk converter is the modified version of the buck-boost converter [46]. Cuk con-

verter has a high impedance due to the capacitor Cf . The design of inductor,

input capacitor, output capacitor, and integrating capacitor is presented by the

following equations.

Vout = D/(1−D)(Vin) (2.17)

Cout = (IoutDTsw)/Vout (2.18)

L1 = DVin/(Ilfsw) (2.19)

L2 = ((1−D)Vout)/(Ioutfsw) (2.20)

Cf = Iout/WVout (2.21)

Where Vout is the output voltage, Cout is the output capacitance, L1 and L2 are

the input and output inductors, Cf is the middle capacitor, D is the duty cycle,

Vin is the input voltage, Tsw is the switching time, Vout is the output voltage

ripples, Iout is the output current ripples.

Due to high impudence and less resistance variation by duty cycle, Cuk converter is

not an optimal converter for MPPT control. The circuit diagram of Cuk converter

is shown in Figure 2.16.
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Figure 2.16: Implementation of maximum power point tracking control using
Cuk converter [12].

Figure 2.17: Classifications of different maximum power point tracking tech-
niques which includes conventional, intelligent, and swarm intelligence based

control techniques [13].

2.11 Maximum Power Point Tracking Techniques

Under the dynamic environmental conditions, that is, non-uniform irradiance and

temperature PV systems fall into partial shading. Under PSC only one GMPP

with multiple LMPPS’s. Therefore, the maximum power point tracking control

is required to extract the maximum power and get the high efficiency from PV
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system. The effectiveness of MPPT techniques can be verified by tracking and

settling time required, tracked power, hardware required for the implementation.

In this study, different MPPT techniques are studied under these classifications.

� Conventional MPPT

� Intelligent MPPT

� Swarm Intelligent MPPT

The classification of all these MPPT techniques is presented in Figure 2.17.

The conventional MPPT techniques includes fractional short circuit (FSCC)[47],

fractional open circuit voltage (FOCV) [48], perturb and observe (P&O) [49],

incremental conductance(INC) [50], hill climbing (HC) [51], modified incremental

conductance (Mod INC) [52] , lookup table method [53] and ripple correlation

control (RCC). Advantages of these techniques are their low complexity for the

implementation required less time to track GMPP and very efficient under uniform

irradiance and temperature. However, the disadvantage is there are oscillations

at GMPP which causes power loss. Also, under PSC when multiple peaks occur

in P-V curve then conventional techniques could not differentiate between GMPP

and stuck at LMPP causing extensive power loss and degrading the efficiency of

the PV system.

Intelligent MPPT techniques include Artificial neural network (ANN) [54], fuzzy

logic control (FLC) [55], Hybrid MPPT techniques and sliding mode control

(SMC) [56] based control techniques. These techniques are highly efficient which

can track GMPP which high accuracy and in very less tracking time. Under

varying environmental conditions these techniques also perform with very high

accuracy. The real problems with these techniques are the requirement of large

data samples for the training and high computation cost.

Another class of MPPT controllers that use meta-heuristic optimization algorithms

is called swarm intelligence-based MPPT control. These MPPT control techniques
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use optimization algorithms which include particle swarm optimization (PSO)

[57], grey wolf optimization (GWO) [58], whale optimization algorithm (WOA)

[59], cuckoo search algorithm (CSA) [60], grasshopper optimization (GHO) [61],

flower pollination algorithm (FPA) [62], low computation cost, high efficiency and

medium time required for the MPPT are the main advantages of these MPPT

control techniques. These control techniques can effectively differentiate between

GMPP and LMPP and extracts the maximum power. In this work, a hybrid

grey wolf optimizer with a sine-cosine algorithm (HGWOSCA) is presented for

the MPPT control technique.

2.12 Conventional MPPT Techniques

In this sub-section, conventional MPPT techniques are presented and explained

in brief. These techniques are shown below:

� Fractional open circuit voltage

� Perturb and observe

� Incremental conductance

� Adaptive reference voltage

� Fractional short circuit current

� Modified incremental conductance

2.12.1 Fractional Open Circuit Voltage (FOCV)

Fractional open circuit voltage is an approximation-based technique. In this tech-

nique, a pilot PV cell of the same type of PV module used in PV system is employed

whose open-circuit voltage is monitored every time. We assume that the same ir-

radiance and temperature condition is applied to pilot cell. The maximum power

point of PV module in PV system can be calculated using the Equation 2.22 [48].
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Vmpp = KVoc (2.22)

Where Voc is the voltage when panel is open, Vmpp is MPP voltage and k is

scaling factor whose value is between 0.7-0.8 and PID is the Proportional-integral-

differential controller. The block diagram of the implementation of FOCV is shown

in Figure 2.18.

Figure 2.18: Block Diagram for implementation of fractional open circuit
voltage based MPPT control [13]

The advantage of FOCV is very simple technique for implementation. The maxi-

mum power point tracking techniques can be implemented using the digital-analog

circuit. No costly hardware is required for implementation. The disadvantage is

that it is based on approximation of Voc which is very inefficient and requires pilot

cell which needs to be operating under the same conditions. Also, these techniques

fail under PSC. Due to falling into local maxima under PSC causes the power loss.

So, this technique is not effective for MPPT control.

2.12.2 Fractional Short Circuit Current (FSCC)

This technique is similar to FOCV. Since MPP contains both Impp and Vmpp so,

in this technique Impp is taken into account in the place of Vmpp. So the short

circuit current is measured of the pilot cell and multiplied by the factor k and fed

into PI controller which maintains the required duty cycle can be calculated using

Equation 2.23 [47]. The generic control diagram of FSCC is shown in Figure 2.19.
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Impp = KIsc (2.23)

Where Impp is the maximum power point current, k is the multiplication factor

and Isc is the short circuit current.

Figure 2.19: Block Diagram for implementation of fractional short circuit
current based MPPT control [13]

Like FOCV, FSCC is also very simple technique for implementation. No complex

hardware is required for FSCC. But same like FOCV, FSCC, also have an approx-

imation which does not track GMPP effectively. Also fails to track GMPP under

partial shading condition.

2.12.3 Perturb and Observe Algorithm (P&O)

Perturb and observe is one of the simplest algorithm to implement on any micro-

controller. Voltage and current sensors are required to calculate the PV power

after sampling time. As the name suggests, perturbation is made on power which

decides the next perturbation of duty cycle. As shown in Figure 2.20. The duty

cycle is changed and the previous power is compared with the next power. If the

current power is higher than the previous power, then still increase the duty cycle

and if the current power is less then the previous power is decreased the duty

cycle. This process will continue and P&O will continuously track GMPP. The

mathematical formulation of P&O is shown in Equation 2.24 to Equation 2.26.

dPPV /dVPV = 0 = MPP (2.24)
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dPPV /dVPV > 0leftsideofMPP (2.25)

dPPV /dVPV < 0rightsideofMPP (2.26)

Where dPpv is the differential PV power and dVpv is the differential PV voltage.

Figure 2.20: Block Diagram for implementation of perturb and based MPPT
control

The implementation of P&O as shown in the flow chart in Figure 2.21 is also

dependent upon the change in voltage of PV module. The problem with P&O is

that continuous oscillations occur at GMPP and under PSC, P&O is stuck into

the local minima. As presented in the literature under uniform irradiance GMPP

with greater than 98% efficiency. Vpv is the PV voltage, Ipv is the PV current,

P(t) is the instantaneous power, P(t-1) is the power at time t-1.

In the flow chart, V(i) and I(i) are the instantaneous voltage and current respec-

tively, V(i-1) and I(i-1) are the voltage and current at the previous step, dP and

dV is the measured change in power and voltage respectively. The D represents

the duty cycle and ∆D is representing the change in the duty cycle.

Perturb and observe is one of the simplest algorithm to implement on any micro-

controller. Voltage and current sensors are required to calculate the PV power

after sampling time. As the name suggests, perturbation is made on power which

decides the next perturbation of duty cycle. The problem with P&O is that con-

tinuous oscillations.
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Figure 2.21: Flow Chart of the Perturb and Observe Scheme for MPPT tech-
nique

2.12.4 Incremental Conductance

The slope of a PV array power is zero at MPP and this is the basic concept behind

INC in order to rack the GMPP under uniform irradiance. INC uses slope of power
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curve to tack the GM rather than power value in P&O which makes incremental

conductance better than P&O. The flow chart shown in Figure 2.22 explains the

working of INC. As we know, the maximum power is defined by Equation (2.27).

PMpp = VMPPxIMPP (2.27)

P = V xI (2.28)

dP/dV = I + d/dV xV (2.29)

Where Pmpp is the power at maximum power, Vmpp is the voltage at maximum

power, Impp is the current at maximum power, dP is the differential power, dV is

the differential voltage.

In the Figure 2.22 flow chart, V(i) and I(i) are the instantaneous voltage and

current respectively, V(i-1) and I(i-1) are the voltage and current at previous step,

dP and dV is the measured change in power and voltage respectively. The “D”

represents the duty cycle and ∆D is representing the change in duty cycle. I and

V are the instantaneous current and voltage. he slope of a PV array power is zero

at MPP and this is the basic concept behind INC in order to rack the GMPP

under uniform irradiance. INC uses slope of power curve to tack the GM

dI/dV = −I/V (2.30)

dI/dV is called incremental conductance. Thus we can track the MPP by using

incremental conductance of P-V curve.

PV module is forced to operate at Vref and which is equal to VMPP at MPP. As

MPP is reached, unless the change in power occurs due to environmental changes,

which causes the change in MPP, convergences, the Speed of INC depends upon

the increments or decrements in Vref. Larger increments lead to fast tracking but

cause more oscillations at GM which leads to power loss.
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Figure 2.22: Flow Chart of the incremental conductance Scheme for Maximum
power point tracking technique

2.12.5 Modified INC

Modified INC presented is used to avoid mathematical divisions used in conven-

tional INC making the algorithm simpler. So this motivated the use of low cost

microcontroller MPPT. Modified equations are shown as
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((V xdI) + (IxdV ))/(dV xV ) = 0 (2.31)

((V xdI) + (IxdV ))/(dV xV ) > 0 (2.32)

Where V and I are the instantaneous voltage and current respectively, dI and dV

are the differential voltage and current respectively.

Equation 2.31 is used to define the MPP and Equation 2.32 represents operating

point at left and right of MPP respectively.

dV x V can be avoided from the previous Equation 2.31 which removes the division

operators in calculation.

(V xdI) + (IxdV ) = 0 (2.33)

(V xdI) + (IxdV ) > 0and∆V > 0 (2.34)

(V xdI) + (IxdV ) > 0anddV < 0 (2.35)

(V xdI) + (IxdV ) < 0anddV > 0 (2.36)

(V xdI) + (IxdV ) < 0anddV < 0 (2.37)

The structure of modified incremental conductance is shown in Figure 2.23. We

can see that only arithmetic and logical operator are used to track the MPP and

after detection of MPP in Equation 2.37 no more perturbs are observed.

In the above mentioned flow chart, V(i) and I(i) are the instantaneous voltage

and current respectively, V(i-1) and I(i-1) are the voltage and current at previous

step, dP and dV is the measured change in power and voltage respectively. The

“D” represents the duty cycle and ∆D is representing the change in duty cycle.

I and V are the instantaneous current and voltage. The change in duty cycle is

produce after specific time and check the power and calculate the conductance.

This conductance will define the next change in duty cycle.
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Figure 2.23: Flow Chart of the modified incremental conductance Scheme for
MPPT technique

2.12.6 Adaptive Reference Voltage (ARV)

Unlike all other conventional MPPT techniques, adaptive reference voltage uses

environmental parameters to track the maximum power. These parameters include

irradiance and temperature.
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Therefore extra sensors for irradiance and temperature measurement is required

which definitely increases the hardware implementation cost but this will be com-

pensated by the efficiency achieved by ARV. This technique is very effective under

changing weather conditions unlike FOCV, FSCC techniques, These irradiance

and temperature conditi ons will generate the reference voltage for MPPT which

is then fed to PI controller for tracking of MPP [63]. The generic diagram of ARV

based MPPT techniques is shown in Figure 2.24.

Figure 2.24: Block Diagram for Implementation of ARV Technique

In the above presented block diagram, G is the irradiance, T is the temperature

Vmpp is the voltage at maximum power, Vpv is the PV voltage.

As presented in the literature, the FOCV and FSCC technique perform with equal

efficiency at 99.7% at the irradiance 1000 w/m2 but FOCV and FSCC techniques

reduce its efficiency when irradiance reaches 400 w/m2. The efficiency achieved is

98% but ARV still performs with ≥99% efficiency at some irradiance level.

2.12.7 Performance evaluation of classical techniques for

MPPT

In this section, the comparison is also between conventional MPPT techniques in

Table 2.4. which shows the comparison in the form of advantages, disadvantages
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and the applications. The biggest problem with the conventional techniques occurs

during PSC when these techniques are unable to track GMPP and loss too much

power.

Table 2.4: Comparative Analysis of Conventional MPPT Techniques

Tech Advantage Disadvantage Application

FOCV Best application when
temperature vary very
low

Approximation to cause
power loss under PSC

Stand-alone

FSCC Very simple low hard-
ware cost

Periodic measurement of ISC
is required and high power
loss under PSC

Stand-alone

P&O Very simple implemen-
tation with high effi-
ciency under dynamic
weather condition

High oscillations at GMPP
and couldn’t differentiate be-
tween LMPP and GMPP

Stand-alone

INC Low oscillations at
GMPP as compared
to P&O and achieves
high efficiency

Required costly hardware due
to variable step control

Stand-alone

MOD-
INC

Very little oscillations
with low execution
time

Hardware implementation is
costly

Stand-alone

ARV Very low tracking time
with very few oscilla-
tions

Due to addition G&T sensors
hardware is costly

Stand-alone

2.13 Intelligent MPPT Techniques

In this section, intelligent MPPT control techniques are presented and discussed

in brief. The discussed techniques are listed below which are going to explain in

this section.

� Fuzzy Logic Controller based MPPT

� Artificial Neural Network based MPPT

� Sting mode controller based MPPT

� Gauss-Newton approach based MPPT
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2.13.1 Artificial Neural Network

With the development of artificial intelligence, a new field emerges which is deep

learning (DL) [64]. Artificial neural network (ANN) basically uses the concept of

neurons in the brain. ANN with the single hidden layer is shown in Figure 2.25.

ANN typically consists of three layers, that is, input, hidden and output layer.

The first layer takes inputs and pass them to the next layer.

]

Figure 2.25: Three Layer Structure of ANN with Single Hidden Layer, Input
layer and output layer [14].

The weights and biases connected define the relation of previous layer with the net

layer. The weights connected between input and hidden layers is wij. The second

layer is called hidden layer which originally map the input with output using the

activation function. The weights connected between the hidden layer and output

layer and it contains activation function or not, depends upon the application.

There are two important factors in ANN [65].
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� Learning method

� Activation method

The updation of weights and biases in ANN depending upon the predicted output

is called learning of ANN for effective performance of ANN during the training

and testing of model, a good learning technique is needs to be opted.

Another important thing in ANN is the selection of activation function for ANN.

This selection is mainly dependent upon whether the problem is classification

or regression. There are different types of activation functions, that is, RELU,

sigmoid, radial basis function [66].

Another method is to use IV curve. The I pv and V pv is fed to ANN with duty

cycle as the output. In this method, the dataset is generated with any conventional

or swarm intelligence-based MPPT technique [67]. As discussed above the input

features of this dataset is I pv and V pv and the class is the duty cycle d. Then

with proper learning method and activation function ANN gets trained on the

given dataset and generated model is employed to track the MPP. This type of

MPPT control technique is presented in Figure 3.10. The inputs to ANN are the

output voltage and current sensor and the output of ANN is directly fed to fed

to the MOSFET driver circuit. Another technique is employed in which general

regression neural network is trained by the fruit fly optimization algorithm [7].

2.13.2 Fuzzy Logic Controller (FLC)

To extract maximum from PV systems MPPT control technique needs to be effi-

cient and can extract maximum energy under dynamic environmental conditions.

For this MPPT controller PV panels needs to be modeled into the mathematical

form. This modeling is easy under uniform irradiance but very difficult to model

under PSC. So the intelligent MPPT techniques are presented in the literature

which achieves high efficiency without knowing the mathematical model of PV
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system because MPPT tracking depends upon fuzzy. Advantages of using FLC

controller for MPPT are

� Doesn’t require exact modeling of PV

� Controller design is totally dependent upon human

� Typically FLC controller design contains three steps which are [68]:

� Fuzzification

� Fuzzy rules

� De-fuzzification

The block diagram of different steps in FLC based MPPT controller for PV system

is shown in Figure 2.26.

Figure 2.26: Block Diagram of Different Steps for Fuzzy logic based MPPT
controller

In the first step is fuzzification in which PV parameter inputs are transformed in

linguistic variables. Then fuzzy rules which are “if then” are designed by humans

for the mapping of inputs and output of PV system.

In the last de-fuzzification is done which is nothing but invert of fuzzification. The

fuzzification process and membership function are shown in Figure 2.27. In this

step, mathematical relation is used to acquire crisp inputs. For the computation

of this process following methods are utilized

� Membership function
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� Centroid method

� Weighted average method

Figure 2.27: Process of Fuzzification and Membership Functions

FLC controller working depends upon the continuous variation of duty cycle d of

the converter with the change in error which is modeled in Equation 2.38.

Error(n) = {P/{V (2.38)

(VPV (n)IPV (n)− VPV (n− 1)IPV (n− 1))/(VPV (n)− VPV (n− 1)) (2.39)

Where Vpv(n) and Ipv(n) are the instantaneous voltage and current respectively,

Vpv(n-1) and Ipv(n-1) are the previous values of the voltage and current respec-

tively. P and V are the differential power and voltage.

Now the duty cycle is changed contours varying the d by focusing on error while

tracking the V ref reference voltage of PV with Vmpp. In this change in error is

also taken into account which is

dE(n) = Error(n)− Error(n− 1) (2.40)

In literature it is proven that FLC performs with high efficiency even under dy-

namic weather conditions [69].
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2.13.3 Sliding Mode Controller (SMC)

For any type of controller, tracking process is very important. This process needs

to be very effective for the unforeseen disturbances or abruptly happening changes.

So, without effecting the efficiency a sophisticated intelligent SMC based tech-

niques are presented. This technique controls the DC-DC converter by sensing

the current DC link capacitor.

In SMC control, there are typically modes of operation.

� Approaching mode

� Sliding mode

In SMC control, important thing is to choose a sliding surface [70]. This selection

is totally dependent upon the application. This strategy (non-linear method) is

employed to control non-linear parameter of system. Biggest advantage of this

technique is that it doesn’t require information/knowledge about the PV panel.

This SMC control technique effectively track GMPP with less tracking time and

very low oscillation produced by the boost converter. These advantages are more

observed when connected with the grid.

S = (dPPV )/(dVPV ) = IPV + VPV (dIPV )/(dVPV ) (2.41)

where S represents the calculation of the exact value of PV voltage, dI PV, dP PV,

and dV PV are the differential current, differential power and differential voltage

respectively. The flow chart for implementation of SMC control for MPPT appli-

cation is shown in Figure 2.28.
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Figure 2.28: Flow Chart for Implementation of Sliding mode control based
MPPT Control

2.13.4 Gauss Newton Based MPPT

Gauss newton method is also an intelligent MPPT technique, theoretically which

have higher efficiency [71]. The main advantage of this method is that no need of

computing the second derivatives. So these kinds of techniques effectively reduces



Literature Review 47

the computation cost. Trade-off is required between the number of iteration vs the

computation cost. The main purpose of this technique is to disintegrate fitness

function f(x) which can be modeled using Equation 2.42 to Equation 2.44 [72].

mi = yi − r(ti, x)(yi, ti)i = 1, 2, . . . , P (2.42)

f(x) = 1/2P ((yi − r(ti, x))
2 (2.43)

l = e((mi)
2) (2.44)

2.13.5 Performance of Evaluation of Intelligent MPPT

Techniques

Intelligent machine learning based MPPT techniques are very efficient and achieve

high efficiency under dynamic atmospheric conditions but a large dataset is re-

quired for training and MPPT techniques are system dependent with high compu-

tation cost. The comparison of intelligent MPPT techniques is presented in Table

2.5, in which merits, de-merits and applications are defined.

2.14 Optimization Algorithm or Swarm

Intelligence Based MPPT

Meta-heuristic optimization algorithm or swarm intelligence based algorithm used

behavior of animals or swarm to solve complex optimization problems. In re-

cent decades these optimization algorithm used as MPPT control technique which

can effectively track the GMPP under dynamic environmental conditions using

exploration and exploitation strategy by updating the duty cycle. In this section

different SI-based MPPT based techniques are discussed and at the end evaluation

comparison is made. The SI based MPPT techniques discussed are listed below

� Particle swarm optimization (PSO)
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Table 2.5: Comparative Analysis of Intelligent MPPT Techniques

Tech Merits De-Merits Application

ANN MPPT Able to track MPP
under PSC with
efficiency and less
time once it is
trained

Large dataset is re-
quired to train ANN
and also it depends
upon system

Grid-Interface

FLC MPPT Mathematical
model is not re-
quired and shows
few oscillations to
track GMPP

Required tuning of
membership function
control rules and scal-
ing factor

Grid-Interface

SMC MPPT Due to perfection
in mathematical
model is very pre-
cise for tracking
GMPP

Needs to effectively
tune sliding surface to
MPPT control

Grid-Interface

Guass New-
ton MPPT

Accurate tracking
of GMPP with no
PV system infor-
mation

Very complex calcula-
tions are required

Grid-Interface

� Grow wolf optimizer (GWO)

� Cuckoo search optimization (CSO)

� Sine cosine algorithm (CSO)

� Artificial bee colony (ABC)

� Grass Hopper Optimization (GHO)

� Genetic algorithm (GA)

� Ant colony optimization (ACO)

2.14.1 Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is the optimization algorithm used for solving

complex engineering problems [73]. This algorithm basically uses the concept of
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swarm intelligence. Its working is inspired by the behavior of flocking birds and

shaolin fish. These flock of birds (particles) search for the food (global best) in

specific area (search space) and the birds update their position in search of flood

according to the bird who finds the food. This method is applied on engineering

problems where particles update position and velocity using the current best and

global best position PSO has very vast applications in engineering problems. The

mathematical model of PSO is presented in Equation 2.45 and Equation 2.46.

X(i+ 1) = X(i) + V (i) (2.45)

V (i) = W (V (i)) + C1r1(Pbest −X(i)) + C2r2(Gbest −X(i)) (2.46)

where x(i) is the current position x(i+1) is the next position. V(i) is the velocity.

w is the weight, C 1, and C 2 are the controlling parameters and r 1 and r 2

are random numbers. P best and G best are the personal best and global best

respectively.

PSO is used to track MPP in PV systems with good efficiency. In MPPT appli-

cations, position of duty cycle is going to be updated using the PSO algorithm.

Firstly, the particles or duty cycles are initialized in the search space, that is, be-

tween 0-100% duty ratio. Then power is checked at every particle which is called

as fitness of the duty cycle. By using the best fitness check the global best particle

with the help of personal best positions of particles. Then velocity is calculated

using Equation 2.46 and updated using the duty cycles using Equation 2.45. The

flow chart for the implementation of PSO as MPPT is shown in Figure 2.29.

In literature, PSO is implemented as MPPT in PV system. Also, there are different

variants of PSO are also proposed for tracking GMPP with high efficiency [74].

Due to random numbers in velocity vector, oscillations are caused even after

achieving the GMPP which causes the power loss. The effort is made to reduce

the oscillation by improvising the PSO and achieving good efficiency. Another

technique is presented which combines the PSO with INC.
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This hybrid technique achieves a high efficiency of >98.5% with IS tracking time

during the initial stage [75]. Another effort is made to implement PSO on low-cost

controller and comparison is made. Simulation results are also presented with the

hardware results. Therefore, this shows that reasonable efficiency can be achieved

by implementing MPPT control technique on the low-cost hardware.

Figure 2.29: Flow chart of PSO Algorithm for MPPT Control
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2.14.2 Cuckoo Search Algorithm (CSA)

This algorithm is inspired by the reproduction behavior of cuckoo bird is taken

to solve optimization problem [76]. Cuckoo bird lay eggs on other birds’ nests by

finding the feasible nest and drops the eggs of other children. CSA uses levy flight

function in order to space, basically, the updating of particle position using the

swarm intelligence which contains direction and velocity. Also, the movement is

restricted using the weight w. The particle position is updating mathematically

as

X(i+1) = Xi + fflevy(˘) (2.47)

levy(˘) = l( − ˘) (2.48)

Where x (i+1)and xi is the updated and current position, λ is the variance, l is

length of the flight and α is used to control the step length which can be calculated

as

ff = ffo(x
t
j + xt

i) (2.49)

Where α o is the fixed step length constant, xt
i and xt

j are two different positions

of the particle selected randomly.

In literature, CSA is used with different variations, that is, adaptive cuckoo search

[77], which tracks the GMPP in PV system with high efficiency and takes less time

as compared to PSO.

2.14.3 Ant Colony Optimization (ACO)

ACO algorithm is inspired by the living behavior of ants in which they move in

search of fold/ ACO [78], mainly there are three steps used which are
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� Greedy search

� Positive feedback

� Distributed computing

Greedy search algorithm helps ACO find more optimal solutions and enhances

the effectiveness of the algorithm. The detection of best optimal solution can

be guaranteed using the positive feedback mechanism to avoid the pre-mature

convergence in ACO, distributed computing is used. In this algorithm for MPPT

control, multiple parameters are needed to be selected by the users which are

� Number of Ants (population)

� Solution of archive size (K)

� Convergence constant (ε)

� Search space locality (R)

In literature. ACO is compared with the classic methods and this comparison

shows that ACO performs better as compared to other MPPT techniques. The

hybrid MPPT technique [79], that is , ACO-P&O is presented with high efficiency

and high convergence speed. Under all environmental conditions.

2.14.4 Artificial Bee Colony (ABC)

ABC is another meta-heuristic optimization algorithm which use the cooperation

of bees to find the food [80]. Basically, the bees live in colonies where they divide

themselves in groups to find food. The bees are divided into three groups

� Employed Bees

� Outlook bees

� Scouts
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Employed bees search for the food and the outlook bees choose food source while

awaiting in hives. The initial random solution in ABC is assigned by using follow-

ing Equation 2.50:

Xi = Xmin + rand()(Xmax −Xmin) (2.50)

where Xmin is the minimum value of solution, Xmax is the maximum value of

solution, Xi is the current position of the particle and rand() is the random number

between 0 and 1. The updating of new solution by employed bee can be modeled

using Equation 2.51.

Vi = Xi + ri(Xi −Xk) (2.51)

Where Vi is the velocity vector, φi is the weight vector, Xi and X j are the two

randomly selected particles from the search space.

The employed bees share information with outlook using probability equation

Pi = fitixSNfiti) (2.52)

Where fiti is the fitness value of the ith particle and Pi is the mean fitness of the

particle i. In literature, ABC is presented and compared with PSO and P&O.

ABC achieves the efficiency of 99.99% with 4.234s. The efficiency of ABC de-

creases with the dynamic changing environmental condition. Hybrid ABC-ANFIS

[81] technique presented which tracks the GMPP very effectively but the imple-

mentation is cost of this technique is high.

2.14.5 Genetic Algorithm (GA)

The genetic algorithm basically works on the principle of biological evolution of

human [82]. In this method, particles have high fitness basically have higher

chance of reproduction,. Initially the random solution are created then the fitness
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of every solution is calculated. On high fitness solution following three techniques

are applied

� Selection

� Crossover

� Mutation

Figure 2.30: Flow Chart for GA based MPPT Control [15].
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So, GA works on the survival of the fittest. GA optimizes the function with low

speed but achieves high efficiency. Also, high computation power is required for

the implementation of GA. The flow chart for the GA is shown in Figure 2.30.

Chromosomes are initialized which could be voltage or duty cycle. Than the power,

that is, fitness is calculated. After that the mutation and crossover method is

applied which generates new solutions and again calculate the fitness of solution

and replace with old ones. In literature GA is used to train the ANN and fuzzy

logic controller and implemented as MPPT control but these techniques required

high dataset with high computational cost [83]. Another way is used in which GA

is combined with P&O which reduces the time taken by MPPT technique with

decent efficiency.

2.14.6 Grasshopper Optimization (GHO)

GHO is a swarm intelligence based optimization algorithm[83], which mimics the

life cycle of grasshopper which consists of two cycles as shown in Figure 2.31.

� Nymph cycle

� Adult cycle

Nymph cycle is basically related to the exploration phase. This is necessary to

have a balance between exploration/exploitation phase, the updating of particle

position is presented in Equation 2.53.

Xi = Si +Gi + Ai (2.53)

where Si is the social interaction, Xi is the particle position, Ai is the effect of

the wind and Gi is the factor of gravity. In order to apply the randomness and

control, the movement of particles, weights are applied and Equation 2.54 is the

modified form of Eq 2.53
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Xi = w1Si + w2Gi + w3Ai (2.54)

where w 1, w 2, and w 3 are the weights This also shows that the particles will

re-initialize and all this optimization process will restart which significant, change

in power occurs due to change in environment condition. These weight vectors are

applied to control the movement of particle in the search space for global solution.

Figure 2.31: GHO Structure for the Particle Position Updation [16].

In literature, GHO is used with search and skip for MPPT control technique. It

presents that GHO achieves up to 99.5% efficiency under various environmental

conditions with up to 400ms for settling at GMPP. The techniuque is compared

with PSO, P&O, DFO, ABC and shows significant efficiency improvement.

2.14.7 Comparative Analysis

SI based MPPT techniques effectively track GMPP under various environmental

conditions and low cost hardware required but the high settling time cause power

loss. The competitive analysis of SI based MPPT techniques is presented in Table.

2.6.
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Table 2.6: Comparative Analysis of Swarm Intelligence Based MPPT Control
Techniques

Technique Summary

In this paper, MPPT controller is implemented on
varying irradiance.

Genetic Algorithm
(GA)

GA-ANN is used to predict step size of INC-based
MPPT.
· MPP detection is offered under constant irradi-
ance.
· Fail to track MPP under non-uniform irradiance.

· Improved version of PSO algorithm is imple-
mented for MPPT.

Particle Swarm
Optimization
(PSO)

· Testing is performed under PSC to track MPP.

· Achieves power traking efficuency > 99%.

· Hybrid ABC and P\&O combined MPPT
technique is presented.

Artificial Bee
Colony (ABC)

· Efficiency achieved larger than 99.5% under
PSC.
· Did not incorporate complex shading condition.

· Improved GWO MPPT technique is imple-
mented.

Grey Wolf Opti-
mizer (GWO)

· Achieves 98.54% power efficiency with 240 ms
tracking time under PSC.

· GHO based MPPT technique is implemented.
Grasshopper opti-
mization (GHO)

· Testing is performed under varying irradiance
and PSC.
· Under complex shading, this technique achieves
99.5% efficiency.

2.15 Gap Analysis

Conventional energy sources are not a suitable option to meet the increasing energy

demand due to high carbon footprints, which severely damage the environment.

Therefore, solar energy is one of the solutions for clean energy due to no carbon

footprint and its abundant nature.

For high-energy production, multiple solar panels are required in series/paral-

lel combinations. However, due to dynamic environmental conditions, i.e. non-

uniform irradiance and temperature on the solar panels, the photovoltaic system
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falls into the category of partial shading condition, which causes a non-linear PV

curve. This non-linear PV curve has multiple local maxima’s and only one global

maxima. PV system therefore needs to operate at this global maximum in order

to deliver maximum power. Sophisticated control techniques are required to track

the global maxima and this tracking of maximum power is called maximum power

point tracking (MPPT).

Conventional MPPT techniques i.e. P&O, INC, Mod-INC show low efficiency

under partial shading conditions due to trapping in local maxima, which decreases

the efficiency of the PV system. Intelligent MPPT techniques or Machine learning-

based MPPT techniques have high efficiency but these techniques require a large

amount of data for training and testing the model. In addition, these techniques

are system-dependent which means we need to train and test the model again

whenever the PV system changes. Swarm intelligence (SI) based MPPT techniques

are the viable solution for the extraction of maximum power under partial shading

conditions but high tracking time, slow convergence time, low tracking efficiency,

low tracked power, and extracted energy are the drawbacks observed. Hence, novel

swarm intelligence-based MPPT techniques are required to fill this gap.

2.16 Problem Statement

Selection of maximum power point tracking control technique depends upon the

tracking time, settling time, tracking efficiency, energy extraction, and imple-

mentation cost. MPPT control techniques presented in the literature show high

tracking and settling time, low tracking efficiency with high implementation cost.

Therefore, to overcome these drawbacks, a novel swarm intelligence-based MPPT

control technique is needed for implementation. Exploration and exploitation

phases are important parts in swarm intelligence based techniques. In explo-

ration phase, particles search for the global maxima in whole search space and in

exploitation phase, particles settles at the global maxima. Therefore, proposed



Literature Review 59

MPPT control technique should have an effective exploration and exploitation

phase to locate the global maximum power point with high accuracy and mini-

mum oscillations at global maxima.

Hybrid grey wolf optimizer sine cosine algorithm (HGWOSCA) is a swarm intelligence-

based MPPT technique presented in this work, which has effective exploration and

exploitation phases with fewer random numbers for position updation of particles

and only one tuning parameter. Characteristics of both grey wolf optimizer and

sine cosine algorithm make HGWOSCA an effective MPPT control technique.

Also, HGWOSCA has very low complexity for the implementation on a low-cost

microcontroller.

2.17 Chapter Summary

In this chapter, first the different modelling techniques of the PV panel are ex-

plained which includes Single diode model, double diode model and triple diode

model. Single diode model is very easy to implement due to usage of single diode

but this model doesn’t cater the all non-linarites of IV and PV curves. These draw-

backs compensated by the double diode model but more precise representation of

IV and PV curve is done by triple diode model. Then the effect of temperature

variation and irradiance variation on I-V and P-V curve is observed which shows

that the change in environmental conditions effect the PV power. Under uniform

irradiance and temperature only one global maxima is observed in P-V curve. The

nonlinearity of I-V and P-V curves becomes more complex when the panels are

exposed to different irradiance which causes hotspot effects and generates mul-

tiple peaks in P-V curve. Due to these multiple peaks, PV doesn’t operate at

maximum Power point. MPPT controller is required which extracts the maxi-

mum power from the PV and always makes it operate at MPP. Different types of

converters are used for the implementation of MPPT control which includes Buck

converter, boost converter, Buck-boost converter and cuk converter. But change

in resistance of the boost converter is directly proportional to the change in duty
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cycle which makes it better suitable for the MPPT controller. So, Boost converter

is used in this study for the implementation of MPPT controller.

In this chapter, a comprehensive review of the MPPT techniques are presented.

Conventional MPPT techniques include Fractional Open Circuit Voltage FOCV,

Fractional Short Circuit Current FSCC, Perturb and Observe P&O, Incremen-

tal Conductance INC, Modified Incremental Inductance Mod-INC and Adaptive

Reference Voltage. Conventional MPPT techniques perform better under uniform

irradiance conditions. Perturb and Observe is one of the simplest technique which

tracks the MPP with high efficiency. It is very easy to implement on the low cost

microcontroller. The hovering of the operating point around MPP is the draw-

back of the P&O. The INC and Mod-INC reduces the ripples at the MPP. But

under partial shading condition, conventional MPPT techniques doesn’t perform

well and unable to differentiate between GMPP and LMPP. Intelligent MPPT

techniques are presented which includes Artificial Neural Network (ANN), Slid-

ing Mode controller (SMC) and Fuzzy Logic Controller (FLC). Bio-inspired meta

heuristic optimization algorithms are implemented for the MPPT which performs

with higher efficiency and takes less computational power for MPPT implementa-

tion.



Chapter 3

Proposed Technique(s) and

Implementation

This chapter deals with the mathematical model and characteristics of the PV

system components in detail. The purpose of this section is to discuss the hardware

components and proposed machine learning algorithm, optimization algorithm,

and PV system integration as MPPT control.

3.1 Grey Wolf Optimizer

Another bio inspired algorithm based on population for solution of optimization

problems is Grey Wolf Optimizer [17]. The working model of GWO is shown in

Figure 3.1. The inspiration of this algorithm is the social hierarchy ad leadership

qualities of grey wolfs.

Alpha is in charge for decision making in hunting. Beta supports the alpha in

commanding other pack actions. Omega is usually called the scapegoat and the

last one permissible to eat. Wolf will be called delta, if it is not alpha, beta, or

omega, which is superior to omega but they have to submit to alpha and beta.

Group hunting is another spellbinding grey wolves behavior. The main phases

of hunting include encircling, hunting, attacking, and searching for prey. The

mathematical modeling of these phases is explained.
61



Proposed Technique 62

Figure 3.1: Particle Position Updation in Grey Wolf Optimzer in pursuit of
Prey [17].

Figure 3.2: Leadership Hierarchy of Grey Wolfs followed for hunting and living

3.1.1 Social Hierarchy

To mathematically represent the social hierarchy, fitness of population required.

The top three fittest solutions will be ranked as alpha (α), beta (β) and delta (δ)
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whereas the rest of solutions will be considered as omega (W).

3.1.2 Encircling Prey

Equation 3.1 and Equation 3.2 are presented to model the encircling behavior of

wolves.

D = (CxXp(t)−X(t)) (3.1)

X(t+ 1) = Xp(t)− AxD (3.2)

Where current iteration is represented by t, A and C are the coefficients. Xp

representing position of the prey and position of grey wolf represented by x. D is

the distance parameter, A and C are calculated by Equation 3.3 and Equation ??:

A = 2ar1 − a (3.3)

C = 2r2 (3.4)

Where ‘a’ is linearly reduced from 2 to 0 over the iterations and r1, r2 are random

numbers between 1-0. Leadership hierarchy has four categories in pack namely

alpha, beta, delta and omega as shown in Figure 3.2. Symbolically represented as

α, β, δ and W respectively.

3.1.3 Hunting

We accept that alpha, beta and delta have a fitter understanding about the proba-

ble prey’s location. In mathematical modeling of hunting behavior we are obliged
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that the other search agents are to update their positions according to the position

of best search agents by the following equations:

Da = (C1xXa −X) (3.5)

Db = (C2xXb −X) (3.6)

Dc = (C3xXc −X) (3.7)

X1 = (Xa − A1xDa) (3.8)

X2 = (Xb − A2xDb) (3.9)

X3 = (Xc − A3xDc) (3.10)

X(t+ 1) = (X1 +X2 +X3)/3 (3.11)

Where a b and c are alpha, beta and delta positions assigned on fitness bases. C1,

C2, C3, A1, A2, A3 are the coefficients, X1,X2,X3 are the positions of the particles

whose value is going to be updated.

3.1.4 Attacking Prey (Exploitation)

Grey wolves will bombard the prey when they finish hunting and this happens

when the prey stops moving. To model the approaching prey, value of ‘a’ decreases

with iterations. With this the range of fluctuation of ‘A’ will also decrease. Note

that ‘A’ represents the random number in interval [-2a, 2a]. So the values which

will decide the upcoming location of search agent which can be anywhere between

its current position and location of the prey. So if —A—<1, this forces the wolves

to attack towards the prey.

3.1.5 Search for Prey (Exploration)

In exploration phase, wolves split from each other to hunt the prey and converge

to attack the prey. As described above, the values of ‘A’ occurs between +1 and
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-1. If —A—>1, this forces the wolves to diverge from the prey to hopefully find

a better a prey.

3.2 Sine Cosine Algorithm

Newly proposed sine cosine functions based algorithm for exploration and ex-

ploitation phases in optimization problems presented by Mirjalili is called sine

cosine algorithm (SCA) [84], For the creation of different random solutions and

fluctuations towards or outwards the optimal solution, SCA is used. The basic

mathematical model of SCA is:

X(t+ 1) = X + r1xsin}(r2)x(r3x(l − x)) (3.12)

X(t+ 1) = X + r1xcos(r2)x(r3x(l − x)) (3.13)

Where X is the current position, r1, r2 and r3 are the random values in [0, 1] and

‘l’ is the optimal solution.

In optimization algorithms, generally, there are two phases, that is, exploration and

exploitation. In sine-cosine algorithm as name suggests, sine and cosine functions

are utilized for the updating of particle position. The mathematical model of

sine-cosine algorithm is presented below:

X(t+ 1) = Xi + asin}(r1)(r2Gi −Xi)r3 < 0.5 (3.14)

Where Gi is the global best solution, α is the factor which is decreasing over

the iteration, r1,r2 and r3 are the random numbers between [1,0]. Alpha can be

calculated as
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a = 1− iter/(max}iter) (3.15)

where iter means the current iteration, max}iter means the maximum number f

iterations. The structure of the Sine Cosine Algorithm for the particle position

updation is shown in Figure 3.3.

In literature, modified sine-cosine algorithm is used for maximum power point

tracking of grid-connected PV systems. High efficiency, low cost of implementation

and high tracking speed are the merits reported for SCA [85].

Figure 3.3: Structure of Sine-Cosine Algorithm for Updation of Particle Po-
sition

3.3 Hybrid Grey Wolf Optimizer Sine Cosine Al-

gorithm (HGWOSCA)

Not fitting for highly complex functions and getting trapped in the local maxima

are the fragility of the other well-known optimization techniques. In order to
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overcome these flaws and increase the searching capability, new algorithm, which

is the hybrid version of GWO and SCA is proposed [86]. The flow chart of the

presented HGWOSCA is shown in Figure 3.4. In this variant sine cosine algorithm

is used to improve movement of alpha agent in GWO.

The intention here is to enhance the global convergence, exploration and exploita-

tion performances. In this HGWOSCA, the convergence, accuracy, speed and

position of alpha agents has been enhanced. This SCA-based movement of alpha

will balance the exploration and exploitation process represented in Equation 3.16

and Equation 3.17. The remaining operation of GWO is the same.

3.4 Implementation of HGWOSCA as MMPT

For extraction of maximum power, the particles i.e. duty cycle in this case, are

initialized over the whole space Dmin and Dmax. The duty cycle is the current

position of the individual. Alpha, beta, and delta positions are Dα, Dβ and Dδ.

The pseudocode of HGWOSCA based MPPT is shown in Figure 3.5.

HGWOSCA is reinitialized when a considerable change of operating conditions

takes place. Variations in weather conditions are detected as the relative change

of power over-passes the threshold.

X(t+ 1) = Xi + asin}(r1)(r2Gi −Xi)r3 < 0.5 (3.16)

X1 = (Xa − A1xDa) (3.17)

Where r1, r2, r3 are the random numbers in [0,1], C1, A are the coefficient, X1,

X a, D a, are the particle position, position of alpha particle and distance from

prey of alpha particle respectively. The intention here is to enhance the global

convergence, exploration and exploitation performances.
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3.5 Re-initialization Strategy

With the change of irradiance, temperature or load the operating point of the

PV panel will deviate and also the power of the panel will change. Therefore,

the algorithm should be that much robust to tackle this change in the system.

Whenever these changes occur, keep track of the power and measure the percentage

change in power using Equation 3.18.

(PPV new − PPV last)/PPV last) = P PV (%) (3.18)

where PPV is the power threshold, PPVnew, PPVlast are the new PV power and

PV power taken previously. The considerable change triggers the re-initialization

of HGWOSCA method.

At first step, initialize the particles randomly on the search space and set the

maximum number of iterations for the control technique. This initialization must

be between 0 and 1 for the case of duty cycle. Then the next step is to calculate

the power of every duty cycle, which is called the fitness value of every particle.

In our case the fitness function is the power of the duty cycle. On the basis of

calculation of the fitness, the top three particles named Alpha, Beta and Delta are

selected. Since, HGWOSCA follow the hierarchy of the GWO so, the top three

ranked particles are selected for the position updation. The global best solution

is forwarded to the boost converter for the power tracking.

After that, update the position of the particles using equation, which is dependent

upon the values of all the particles and the top three particles. This particle

position updation will take the current duty cycle near to the global best solution

in extraction of global maxima. Than next step is the updation of “A” and “C”.

In next step update the values of the alpha, beta and delta which is mathematically

modeled above. After that update the values X1, X2, and X3 which are going to

be used for the updation of the particle position for duty cycle. If the change

in power occurs due to irradiance or temperature variation, then the detection

mechanism is used which is done using the formula above mentioned.
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Figure 3.4: Flow chart of proposed technique

In next step update the values of the alpha, beta and delta which is mathematically

modeled above. After that update the values X1, X2, and X3 which are going to

be used for the updation of the particle position for duty cycle. At the end check

for the termination criteria if the termination criteria are met then we have to stop

the tracking and send the global best that is alpha position to the boost converter

and the converter will settle at the global maxim.



Proposed Technique 70

If the change in power occurs due to irradiance or temperature variation, then the

detection mechanism is used which is done using the formula above mentioned.

When the change in power detected after the settling of duty cycle, this means

now the Re-initialization is need to be done for again tracking of MPP. Again the

particles will be randomly assigned and the exploration and exploitation phase

will again start.

Figure 3.5: Pseudo code of proposed technique

3.6 Tracking mechanism of HGWOSCA

Tracking mechanism of HGWOSCA is shown in Figure 3.6. Using the curves

of the output voltage and duty cycle. Top right curve shows the PV curve in PS

condition which has 3 LM’s and 1 GM. Four particles P1, P2, P3, and P4 represent

the population which is randomly initialized in the whole search area.

In every iteration, the position is updated and the particles are shown on P-V

curve with different colors. Power is calculated against every particle which is

the fitness of each particle and other particles position is updated based upon the

particles position.

In PSO, position of every particle is updated using the Pbest and Gbest values.

In HGWOSCA, top 3 particles with best fitness play an important role for the
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position update. Large fluctuations in the voltage are observed due to updating

of particle position with large value of A and these particle positions are the duty

cycle which is the control variable of the boost converter which changes the voltage

vigorously.

In first 60ms, high increase in voltage is observed due to the high explorative

behavior of HGWOSCA controlled. Till 150ms, the explorative behavior can be

observed. P2 encounters LM2 at 90ms and when the particles are stuck at LM,

its movement becomes minimum. LM trap cannot break until other particles are

found at global best and then all particles again start to converge towards the

global maxima causing large fluctuations in the voltage and power as created by

P2 when moving towards GM, found by P3 as shown in Figure3.6 (C).

Figure 3.6: The tracking formation of HGWOSCA in partial shading condi-
tions on P-V curve

All particles start to converge towards GM after 120ms. Meanwhile, P4 finds a

new best and a surge is again detected at 120ms. LM is encountered again due

to overtaking of P3 from P4. During the breaking of LM3, a voltage spike is ob-

served at 150ms and GM is found between 150ms-160ms and all particles converge

at GM. As the factor A becomes small over the iterations, the oscillations at GM

are reduced significantly and the mechanism settles at GM. Searching mechanism
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Figure 3.7: Movement of particles for proposed technique during extraction
of global optimum solution

of HGWOSCA is further elaborated in Figure 3.7. Exploitations become effective

after number of iterations which is perfect for the efficiency and oscillations reduc-

tion. The operating points lie on P-V curves and I-V curves. Iterative process to

track GM under PS is shown in Figure 3.7. In Figure 3.7(a) initialization occurs.

In Figure 3.7(b) and 3.7(c) best solution is tracked which is LM3. Figure 3.7(d)

and Figure 3.7(e) represent the breaking of the LM3 track and finally, the true

GM is tracked successfully in Figure 3.7(f).

3.7 HGWOSCA Under Complex Partial Shad-

ing

When large numbers of PV modules undergo partial shading, several closely linked

peaks are formed. This type of shading is known as complex partial shading which

has already been discussed in case 4. Cluster is the collection of above mentioned

local peaks and Cluster Head Maxima (CHM) is a unique point in every cluster.

In Figure 3.8, CPS condition is shown and it can be seen that there are two clusters.

Cluster-1 exists in left half plane of P-V curve which contains three MPPs. From

left - right LM power is 738.3W, 901.4 W and 892.6 W which is the head maxima

of cluster 1 whereas, in cluster 2, there are three MPPs. Powers from left to right

are 896.6W, 918.2 W and 851.5W. CHM occurs at the center which is also the
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global maxima which is just 17 W less from cluster 1 and also has a close value

with other MPPs in cluster 2.

Figure 3.8: Cluster Formation of multiple peaks in complex partial shading
scenario with two cluster heads

In the last iterations, velocity vectors deliberately retard the movement of the par-

ticles. For better convergence and less oscillations, in the last iterative cycles slower

movement of particles is suitable. Around 6% power loss occurs in complex partial

shading due to undetected GM. The loss becomes prominent due to non-proper

tuning of swarm based intelligence techniques. These techniques are effective when

the GM is in the center but the problem develops superior as the GMPP is tilted

from center. Using of large number of particles is a common approach used to

overcome the latter issue however this approach raises the resources to compute

the social interaction. Therefore reduced ranged applications, complexity and cost

are the side effects. HGWOSCA effectively deals with these issues by increasing

the exploration phase and has a slow movement as the iterations increase in order

to reduce the oscillations and get GMPP effectively.

3.8 Chapter Summary

In this chapter, proposed MPPT technique, which is the fusion of two meta-

heuristic algorithms i.e. grey wolf optimizer and sine cosine algorithm, is ex-

plained. The hybrid grey wolf optimizer sine cosine algorithm have the best mer-

its of both algorithms. Then the implementation of HGWOSCA is presented as
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MPPT control and explained the working of proposed technique under partial

shading condition. HGWOSCA takes less time to track and settle at GMPP with

higher efficiency. The working of MPPT technique is also needed to be checked

under complex partial shading condition.



Chapter 4

Results and Discussions

In this section 4, different cases have been presented which represents the operating

conditions of PV panel. The descriptive structure of the setup implemented for

the MPPT control is presented in Figure 4.1. Simulation setup for MPPT control

based on Bio-inspired MPPT technique is shown in Figure 4.2, which is simulated

using MATLAB/SIMULINK 2018a.

� Performance of HGWOSCA is compared with PSO, PSOGS, CS, P&O, and

GHO by simulating four cases.

� Case 1 represents the fast varying conditions. Case 2 and 3 represents the

partial shading conditions. Complex partial shading condition is presented

in Case 4.

� Table 4.5 represents the detailed performance analysis.

� The specifications of the components used for the simulations are presented

in Table 4.1.

Due to high switching frequency of the boost converter, the design value of the

inductor and capacitor is low which reduces the size of the circuit and makes less

hardware for the implementation. The PV module used is having maximum power

of 300 W and load resistance selected for the MPPT implementation is 70 ohms.
75
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Figure 4.1: Descriptive Diagram of Simulation Setup Implemented in MAT-
LAB Simulink

Table 4.1: Components specifications used for the simulation

Components Values

Panel Power 320 W

Inductor 1.4 mH

Capacitor at input,
Cin

10 uF

Capacitor at output,
Cout

470 uF

Frequency of switch-
ing, f

50 kHz

Resistive load, RL 70 Ω

4.1 Evaluation Criteria of MPPT Techniques

To evaluate the performance of MPPT techniques, evaluation criteria is defined

below:
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Figure 4.2: Simulation Setup of Bio-Inspired based MPPT Control of PV
System

� Oscillations at GMPP, Power tracked, tracking time, settling time and power

efficiency are the terms used for comparative analysis.

� Tracking time is the time required to track the global maximum power point.

Low tracking time will lead to high efficiency and less power loss.

� Settling time is the time required to settle at the global maximum power

point with no oscillations. Less settling time also leads to the higher effi-

ciency of PV system.

� Tracked Power is the power at which the MPPT technique is settled which

defines the tracking efficiency of the PV system. For MPPT technique it

needs to be maximum.

� Robustness and sensitivity of MPPT techniques can be validated using the

statistical analysis i.e. Root mean square error (RMSE), Mean absolute error

(MAE), relative error (RE).
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Table 4.2: Irradiance pattern for cases 1, 2 and 3

Cases Irradiances G (kW/m2) of each PV
module

Pmax
(Watts)

PV1 PV2 PV3 PV4

Case 1: Vary-
ing

1,0.35,0.75 1,0.35,0.75 1,0.35,0.75 1,0.35,0.75 1,280,257,957

Case 2: PS-1 0.35 0.8 0.5 0.24 335
Case 3: PS-2 0.9 0.69 0.8 0.5 702

4.2 Case 1: Fast Changing Irradiance

4.2.1 Test Scenario for Case 1:

Under uniform irradiance, PV panels obtain same irradiances but irradiance inten-

sity change over the time known as rapidly changing irradiance. Case 1 shown in

Table 4.2 encapsulates the behavior of MPPT techniques in fast varying irradiance

and test pattern. The changing irradiance with the maximum power is shown in

Figure 4.3. The PV curves for the change in irradiance in case 1 is shown in Figure

4.4. The maximum power point is also mentioned in P-V curve which needs to

track by the MPPT technique.

4.2.2 Case 1 Results

In Case 1 irradiance is changing and the re-initialization of the particles occurs af-

ter every 2 seconds due to change in power and algorithms restart and again track

the power. The variation of the duty cycle for tracking of power. The duty cycles

are evaluated and fitness values are calculated during the exploration and exploita-

tion phase. HGWOSCA MPPT technique is effective in both the exploration and
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Figure 4.3: Irradiance pattern for PV panels for case 1 with maximum power
at every changing irradiance

Figure 4.4: PV curves for different irradiance levels in case 1

exploitation phase and extracts maximum power as compared to other techniques.

HGWOSCA have good capability of exploration and exploitation phases, which

cause effective tracking of GMPP under dynamic irradiance variation conditions.

The HGWOSCA tracks the global maxima in less than 0.2 seconds and have high

tracking efficiency. Figure 4.5 (a) shows the tracking of power under case 1 by

HGWOSCA and Figure 4.5 (b) shows the variation of duty cycle for case 1. The

evaluation parameter achieved by the HGWOSCA is shown in Figure 4.6.

Integration of Sine-Cosine algorithm in GWO makes exploration capability very

high, which helps to locate the GM very efficiently. Over the iterations, the param-

eter “a” decreases, which works as exploitation, phase, and reduces the movement



Results and Discussions 80

of the particles. Over the iterations, the particles will start converging to the

global maxima and settles at GM. The average maximum power in case 1 is 1282

W and the power tracked by the HGWOSCA is 1280 W which shows the high

efficiency of the HGWOSCA under varying conditions.

The effectiveness of the proposed technique can be verified by the tracking and set-

tling time. The tracking time is 0.16 seconds and the settling time is 0.24 seconds.

This proposes that the HGWOSCA is best suitable for MPPT applications.

Figure 4.5: (a) Power Tracking of HGWOSCA in Case 1 (b) Duty Cycle
Variation of HGWOSCA in Case 1

GHO has the capability to effectively track GM under varying conditions but

the oscillations after tracking of GM are the main problems, which cause the low

efficiency. The re-initialization occurs after every 2 seconds. Power tracked by

the GHO under case 1 is shown in Figure 4.7 (a) and duty cycle variation by

GHO under case 1 is shown in Figure 4.7 (b). The extraction of the energy is also

an important parameter, which depends upon the extraction of power over time.

Therefore, high power extraction leads to higher energy extraction from the PV

system.
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Figure 4.6: Evaluation parameters of HGWOSCA in case 1

Parameter “c” in GHO causes oscillations, which reduces average power and effi-

ciency. The effective tuning of parameter “c” is the biggest problem in GHO, It

has to be done very precisely for effective tracking. The average power tracked by

the GHO is 829.7 W, which is low as compared to HGWOSCA. The tracking time

of the GHO is 0.19 seconds and the settling time of the GHO is 0.35 seconds. The

tracking and settling time are high as compared to HGWOSCA, which causes the

low efficiency of the GHO as compared to HGWOSCA. The evaluation parameters

achieved by GHO are presented in Figure 4.8.

Particle swarm optimization with gravitational search (PSOGS) is another tech-

nique that is implemented for the MPPT application. The PSOGS have low

oscillations as compared to GHO but have low tracking efficiency due to restricted

movement of the particle due to gravitational effect. The power tracked by PSOGS

is shown in Figure 4.9 (a) and the duty cycle variation of PSOGS under varying

irradiance condition is shown in Figure 4.9 (b).

After every 2 seconds, the particles are initialized and the particle updation occurs

due to PSOGS algorithm but the oscillations are very low. The average power

tracked by the PSOGS is 829.6 W, which is less than GHO and HGWOSCA.
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Figure 4.7: (a) Power Tracking of GHO in Case 1 under varying irradiance
(b) Duty Cycle Variation of GHO in Case 1 under varying irradiance

Figure 4.8: Evaluation Parameter of GHO for Case 1

The tracking time and settling time are the 0.21 seconds and 0.35 seconds respec-

tively. The oscillations of PSOGS after tracking of GM is very low due to high

exploitation behavior. The tracking time, settling time and efficiency achieved by

the PSOGS is shown in Figure 4.10.
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PSOGS is the variant of the PSO algorithm, which shows better results as com-

pared to CSA and PSO. In addition, the extraction of energy is less as compared

to GHO and HGWOSCA.

Figure 4.9: (a) Power Tracking of PSOGS in Case 1 under varying irradiance
(b) Duty Cycle Variation of PSOGS in Case 1 under varying irradiance

Figure 4.10: Evaluation Parameter of PSOGS for Case 1

Levy flight function is one of the random walks, which are used in the optimization

algorithm. Cuckoo search uses the levy flight function for updation of particles
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Figure 4.11: (a) Power Tracking of CSA in Case 1 under varying irradiance
(b) Duty Cycle Variation of CSA in Case 1 under varying irradiance

position. Due to this levy flight function the particles are moving even after the

exploitation phase. Due to this oscillations can be observed after tracking of GM

and the efficiency of the CS based MPPT technique is reduced.

Power tracking capability of CSA is shown in Figure 4.11 (a) and the variation of

the duty cycle is shown in Figure 4.11 (b). The power tracked by the CSA is 1278

W which is less as compared to GHO, HGWOSCA, and PSOGS. The average time

taken to track and settle at GM is 0.35 seconds and 0.55 seconds respectively. The

high settling time validates that the CSA uses the levy flight function for updation

of particles position.

The evaluation parameters achieved by the CSA MPPT technique are presented in

Figure 4.12 which validates that the efficiency achieved by the CSA is lower than

HGWOSCA and has high settling and tracking time as compared to HGWOSCA.

Particle swarm optimization uses the behavior of birds flock to locate the global

maxima in the optimization problem. The position updation of the particles in

PSO depends upon the velocity vector used which has random numbers embedded.

The parameters C1 and C2 are also required to tune for the specified applications.
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Figure 4.12: Evaluation parameters of CSA in case 1

PSO is one of the first swarm optimization algorithms presented that’s why it is

used for the comparison.

Particle swarm optimization algorithm shows high oscillations due to random num-

bers in velocity vector and the weight factor is used to control the movement of

particles. Figure 4.13(a) shows the power tracking of PSO under case 1 and Fig-

ure 4.13(b) shows duty cycle variation of PSO for case 1. The tracking time and

settling time achieved by PSO are 0.32 s and 0.45 s respectively. The efficiency

achieved by PSO is 99.72 %. These evaluation parameters are shown in Figure

4.14.

HGWOSCA settles 35% faster at GM which shows that it is robust. HGWOSCA

reduces the oscillations at GM, which in turn increases the efficiency and helps in

saving power. P&O congregates at GM but doesn’t settle at GM, rather it keeps

on oscillating around 40 W which decreases its efficiency.
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Figure 4.13: (a) Power Tracking of PSO in Case 1 under varying irradiance
(b) Duty Cycle Variation of PSO in Case 1 under varying irradiance

Figure 4.14: Evaluation parameter of PSO in case 1

4.2.3 Comparative Analysis Case 1

Power achieved by HGWOSCA is 1280 W, which is highest as compared to 1279.9

W, 1279.7 W, 1278 W, 1278.5 W, 1257 W of GHO, PSOGS, CS, PSO and P&O

respectively.
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HGWOSCA achieved the highest efficiency of 99.84%, whereas other techniques

offered the efficiency of 99.82%, 99.81%, 99.68%, 99.72% and 98.04% for GHO,

PSOGS, CS, PSO and P&O respectively.

To gauge the performance of fast varying irradiance, the average value is suited

the best. The average power achieved by HGWOSCA, GHO, PSOGS, CS, PSO

and P&O are 924.3 W, 912.33 W, 911.66 W, 903.3 W, 902.66 W and 909.33 W.

This shows that HGWOSCA achieved 12-15 W more power than others.

The overall efficiency achieved by HGWOSCA, GHO, PSOGS, CS, PSO and P&O

is 99.17%, 97.88%, 97.56%, 97.78%, 96.92% and 96.81% respectively. Therefore,

these techniques can be ranked as HGWOSCA > GHO > PSOGS > CS > PSO

> P&O. Tracking time of HGWOSCA, GHO, PSOGS, CS, PSO and P&O is

0.16s, 0.19s, 0.21s, 0.35s, 0.32s and 0.12s. Settling time of HGWOSCA, GHO, CS,

PSOGS, PSO and P&O is 0.24s, 0.35s, 0.55s, 0.35s, 0.45s and 0.12s. The overall

comparative analysis of all techniques in case 1 is presented in Figure 4.15.

Figure 4.15: Comparative analysis of evaluation parameters for case 1
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4.3 Case 2: PS Condition

4.3.1 Test Scenario Case 2

In this case, GMPP is at 335W. Irradiance pattern is shown in Table 4.2, whereas

P-V curve is presented in Figure 4.16 with center skewed GMPP and the maximum

power is 335 W. The irradiance pattern on all 4 panels is shown in Figure 4.17.

The irradiance on every panel is constant for 1 s and created a partial shading

condition. In this PV curve for case 2, there are 4 peaks which have 3 local

maxima’s and 1 global maxima. The GMPP is center skewed which means he PV

curve have GMPP in the center and have LM at the right and left side of the

peak. Conventional MPPT techniques i.e. perturb and observe is unable to track

GMPP and stuck at the LMPP that why the P&O technique is not included in

the comparison.

Figure 4.16: PV Curve for the partial shading condition in case 2 with center
skewed global maxima

4.3.2 Case 2 Results

HGWOSCA has the capability of distinguishing among exploration and exploita-

tion phases, which cause effective tracking of GMPP under partial shading condi-

tions. The HGWOSCA tracks the global maxima in less time with high efficiency.

Figure 4.18(a) shows the tracking of power under case 2 by HGWOSCA and Figure
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Figure 4.17: Irradiance Values on all panels in case 2

4.18()b) shows the variation of duty cycle for case 2. The evaluation parameter

achieved by the HGWOSCA shown in Figure 4.19.

Integration of Sine-Cosine algorithm in GWO makes exploration capability very

high, which helps to locate the GM very efficiently. Over the iterations, the param-

eter “a” decreases, which works as exploitation, phase and reduces the movement

of the particles. Over the iterations, the particles will start converging to the

global maxima and settles at GM. The maximum power in case 2 is 335 W and

the power tracked by the HGWOSCA is 334.7 W which shows the high efficiency

of the HGWOSCA under partial shading conditions.

The evaluation parameter of HGWOSCA for case 2 is shown in Figure 4.19 which

shows that the tracking and settling time of HGWOSCA is 0.15 s and 0.22 s

respectively. The efficiency achieved is upto 99.91 %.

GHO have the capability to effectively track GM under partial shading conditions

but the oscillations after tracking of GM are the main problems, which cause the

low efficiency. Power tracked by the GHO under case 2 is shown in Figure 4.20(a)

and duty cycle variation by GHO under case 2 is shown in Figure 4.20(b).

Parameter “c” in GHO causes oscillations, which reduces the efficiency. The ef-

fective tuning of parameter “c” is the biggest problem in GHO, that has to be
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Figure 4.18: (a) Power Tracking of HGWOSCA in Case 2 under PSC (b)
Duty Cycle Variation of HGWOSCA in Case 2 under PSC

Figure 4.19: Evaluation parameter of HGWOSCA for case 2
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done very carefully for effective tracking. The power tracked by the GHO is 334.6

W, which is low as compared to HGWOSCA. The tracking time of the GHO is

0.16 seconds and the settling time of the GHO is 0.51 seconds. The tracking and

settling time are high as compared to HGWOSCA, which causes the low efficiency

of the GHO as compared to HGWOSCA. The evaluation parameters achieved by

GHO are presented in Figure 4.21.

The extraction of the energy is also an important parameter, which depends upon

the extraction of power over the time. Therefore, high power extraction leads to

high-energy extraction from the PV system.

Figure 4.20: (a) Power Tracking of GHO in Case 2 under PSC (b) Duty Cycle
Variation of GHO in Case 2 under PSC

Particle swarm optimization with gravitational search (PSOGS) is the another

technique which is implemented for the MPPT application. The PSOGS have low

oscillations as compared to GHO but have low tracking efficiency due to restricted

movement of the particle due to gravitational effect. The power tracked by PSOGS

is shown in Figure 4.22(a) and the duty cycle variation of PSOGS under partial

shading condition is shown in Figure 4.22(b).
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Figure 4.21: Evaluation parameter of GHO for case 2

Figure 4.22: (a) Power Tracking of PSOGS in Case 2 under PSC (b) Duty
Cycle Variation of PSOGS in Case 2 under PSC

Under partial shading condition random assignment of particles position occurs

and the particle updation occurs due to PSOGS algorithm but the oscillations are

very low. The average power tracked by the PSOGS is 334.4 W, which is less than

GHO and HGWOSCA. The tracking time and settling time are 0.27 seconds and

0.55 seconds respectively. The oscillations of PSOGS after tracking of GM is very
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low due to high exploitation behavior.

Tracking time, settling time, and efficiency achieved by PSOGS is shown in Figure

4.23. The efficiency achieved by PSOGS is 99.82 % which is less than HGWOSCA.

Figure 4.23: Evaluation parameter of PSOGS for case 2

Levy flight function is one of the random walks, which are used in optimization

algorithm. Cuckoo search uses the levy flight function for updation of particles

position. Due to this levy flight function the particles are moving even after the

exploitation phase. Due to this oscillations can be observed after tracking of GM

and the efficiency of the CS based MPPT technique reduced.

Power tracking capability of CSA is shown in Figure 4.24(a) and the variation of

the duty cycle is shown in Figure 4.24(b). The power tracked by the CSA is 334.5

W which is less as compared to GHO, HGWOSCA and PSOGS. The average time

taken to track and settle at GM is 0.30 seconds and 0.64 seconds respectively. The

high settling time validates that the CSA uses the levy flight function for updation

of particles position.
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The traking time, settling time and efficiency achieved by CSA is shown in Figure

4.25. The efficiency achieved is 99.85 % which is less as compared to HGWOSCA

and GHO.

Figure 4.24: (a) Power Tracking of CSA in Case 2 under PSC (b) Duty Cycle
Variation of CSA in Case 2 under PSC

Figure 4.25: Evaluation parameter of CSA for case 2

Particle swarm optimization uses the behavior of birds flock to locate the global

maxima in the optimization problem. The position updation of the particles in
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PSO depends upon the velocity vector used which has random numbers embedded.

The parameters C1 and C2 are also required to tune for the specified applications.

PSO is one of the first swarm optimization algorithms presented that’s why it is

used for the comparison.

Particle swarm optimization algorithm shows high oscillations due to random num-

bers in velocity vector and the weight factor is used to control the movement of

particles. Figure 4.26(a) shows the power tracking of PSO under case 2 and Fig-

ure 4.26(b) shows duty cycle variation of PSO for case 2. The tracking time and

settling time achieved by PSO is 0.30 s and 0.75 s respectively. The efficiency

achieved by PSO is 99.85 %. These evaluation parameters are shown in Figure

4.27.

PSO, PSOGS, GS, CS and GHO have randomness which causes more oscillations.

PSO and CS both track GMPP at 334.5 however with the toll of high settling time

of 0.75s and 0.64s respectively which causes power loss and decrease efficiency.

Figure 4.26: (a) Power Tracking of PSO in Case 2 under PSC (b) Duty Cycle
Variation of PSO in Case 2 under PSC
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Figure 4.27: Evaluation parameter of PSO for case 2 in comparison with
proposed technique

4.3.3 Comparative Analysis of Case 2

GMPP is located at 335W and power tracked by HGWOSCA, GHO, PSOGS, CS

and PSO is 334.7W, 334.6W, 334.4W, 334.5W with efficiency of 99.91%, 99.88%,

99.82%, 99.85% and 99.85% respectively. It is quite evident that the efficiency

of HGWOSCA is better. Fast tracking of GMPP and settling time shows the

robustness of MPPT techniques.

Experimental simulations show that it takes HGWOSCA 0.15s, GHO 0.16s, PSO

and CSA 0.27s, and PSOGS 0.3s to track GMPP and settles at 0.22s, 0.51s, 0.5s,

0.75s and 0.64s respectively. Comparative analysis of the evaluation parameters is

shown in Figure 4.28. Pertub and Observe are stuck in local maxima and achieve

a comparatively low efficiency of 71.46 %. The tracking and settling time of P&O

can not be defined because it does not track the GMPP. So, the comparison is

only made with efficiency.
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Figure 4.28: Comparative analysis of evaluation parameter for case 2

4.4 Case 3: PS Condition

4.4.1 Test Scenario of Case 3

Irradiance under PS given in Table 4.2 and P-V characteristics curve is represented

in Figure 4.29 with left skewed GMPP which is located at 702 W and other peaks

are local maxima’s. The irradiance pattern on all 4 panels in case 3 is shown in

Figure 4.30 which is constant on every panel for 1 second.

In this PV curve for case 3, there are 4 peaks which have 3 local maxima’s and

1 global maxima. The GMPP is center skewed which means the PV curve have

GMPP in the center and has LM at the right and left side of the peak. Conven-

tional MPPT techniques i.e. perturb and observe is unable to track GMPP and

stuck at the LMPP that why the P&O technique is not included in the comparison.
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Figure 4.29: PV Curve for the partial shading condition in case 3 with left-
skewed global maxima

Figure 4.30: Irradiance values of all panels in case 3

4.5 Results of Case 3

The HGWOSCA tracks the global maxima in less time with high efficiency. Figure

4.31(a) shows the tracking of power under case 3 by HGWOSCA and Figure

4.31(b) shows the variation of duty cycle for case 3. The evaluation parameter

achieved by the HGWOSCA is shown in Figure 4.32.

The maximum power in case 3 is 702 W and the power tracked by the HGWOSCA

is 701.5 W which shows the high efficiency of the HGWOSCA under partial shading

conditions. The evaluation parameter of HGWOSCA for case 3 is shown in Figure

4.32 which shows that the tracking and settling time of HGWOSCA is 0.16 s and

0.23 s respectively. The efficiency achieved is upto 99.92 %.
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Figure 4.31: (a) Power Tracking of HGWOSCA in Case 3 under PSC (b)
Duty Cycle Variation of HGWOSCA in Case 3 under PSC

Figure 4.32: Evaluation parameter of HGWOSCA for case 3

GHO has the capability to effectively track GM under partial shading conditions

but the oscillations after tracking of GM are the main problems, which cause the
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Figure 4.33: (a) Power Tracking of GHO in Case 3 under PSC (b) Duty Cycle
Variation of GHO in Case 3 under PSC

low efficiency. Power tracked by the GHO under case 3 is shown in Figure 4.33(a)

and duty cycle variation by GHO under case 3 is shown in Figure 4.33(b).

Parameter “c” in GHO causes oscillations, which reduces the efficiency. The ef-

fective tuning of parameter “c” is the biggest problem in GHO, which has to be

done very carefully for effective tracking. The power tracked by the GHO is 701.4

W, which is low as compared to HGWOSCA. The tracking time of the GHO is

0.18 seconds and the settling time of the GHO is 0.60 seconds.

The tracking and settling time are high as compared to HGWOSCA, which causes

the low efficiency of the GHO as compared to HGWOSCA. The evaluation pa-

rameters achieved by GHO are presented in Figure 4.34.

Particle swarm optimization with gravitational search (PSOGS) is another tech-

nique that is implemented for the MPPT application. The PSOGS have low

oscillations as compared to GHO but have low tracking efficiency due to restricted

movement of the particle due to gravitational effect. The power tracked by PSOGS
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Figure 4.34: Evaluation parameter of GHO for case 3

is shown in Figure 4.35(a) and the duty cycle variation of PSOGS under varying

irradiance condition is shown in Figure 4.35(b).

Under partial shading condition random assignment of particles position occurs

and the particle updation occurs due to PSOGS algorithm but the oscillations are

very low. The average power tracked by the PSOGS is 701 W, which is less than

GHO and HGWOSCA. The tracking time and settling time are 0.26 seconds and

0.70 seconds respectively. The oscillations of PSOGS after tracking of GM is very

low due to high exploitation behavior.

The evaluation parameters of PSOGS are shown in Figure 4.36 which shows that

the efficiency achieved by the PSOGS is 99.85 % which is less as compared to

GHO and HGWOSCA. Therefore, PSOGS is not suitable for MPPT application

under partial shading conditions.

Levy flight function is one of the random walks, which are used in the optimization

algorithm. Cuckoo search uses the levy flight function for updation of particles

position. Due to this levy flight function the particles are moving even after the
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Figure 4.35: (a) Power Tracking of PSOGS in Case 3 under PSC (b) Duty
Cycle Variation of PSOGS in Case 3 under PSC

Figure 4.36: Evaluation parameter of PSOGS for case 3 in comparison with
the proposed technique which shows the effective performance of HGWOSCA
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Figure 4.37: (a) Power Tracking of CSA in Case 3 under Partial shading
condition (b) Duty Cycle Variation of CSA in Case 3 under partial shading

condition

exploitation phase. Due to this oscillations can be observed after tracking of GM

and the efficiency of the CS based MPPT technique reduced.

Power tracking capability of CSA is shown in Figure 4.37(a) and the variation

of the duty cycle is shown in Figure 4.37(b). The average power tracked by the

CSA is 700.8 W which is less as compared to GHO, HGWOSCA and PSOGS. The

average time taken to track and settle at GM is 0.31 seconds and 0.72 seconds

respectively. The high settling time validates that the CSA uses the levy flight

function for updation of particle’s position.

The evaluation parameter achieved by CSA MPPT technique is shown in Figure

4.38 which shows that the efficiency achieved by CSA is 99.82 %. The efficiency

achieved is very low as compared to HGWOSCA, GHO and PSOGS.

Particle swarm optimization uses the behavior of birds flock to locate the global

maxima in the optimization problem. The position updation of the particles in
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Figure 4.38: Evaluation parameter of CSA for case 3 comparison with pro-
posed technique

PSO depends upon the velocity vector used which has random numbers embedded.

The parameters C1 and C2 are also required to tune for the specified applications.

PSO is one of the first swarm optimization algorithms presented that’s why it is

used for the comparison. The position updation of the particles in PSO depends

upon the velocity vector.

Particle swarm optimization algorithm shows high oscillations due to random num-

bers in velocity vector and the weight factor is used to control the movement of

particles. Figure 4.39(a) shows the power tracking of PSO under case 3 and Fig-

ure 4.39(b) shows duty cycle variation of PSO for case 3. The tracking time and

settling time achieved by PSO is 0.49 s and 0.90 s respectively. The efficiency

achieved by PSO is 98.57 %.

The tracking time, settling time, and efficiency achieved by PSO is shown in Figure

4.40. The achieved efficiency is very low as compared to other MPPT tehniques

while the tracking and settling time is also very high. SO, PSO is not a good

option for MPPT application.
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Figure 4.39: (a) Power Tracking of PSO in Case 3 under PSC (b) Duty Cycle
Variation of PSO in Case 3 under PSC

Figure 4.40: Evaluation parameter of PSO for case 3

4.5.1 Comparative Analysis of Case 3

Tracking time of HGWOSCA, GHO, PSOGS, CS and PSO is 0.16s, 0.18s, 0.26s,

0.315s and 0.49s respectively whereas their settling time is 0.2s, 0.6s, 0.7s, 0.715s
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and 0.9s respectively. HGWOSCA tracks 20ms faster than GHO and also set-

tles 340ms faster which proves the robustness and higher tracking efficiency of

HGWOSCA as compared to other techniques.

HGWOSCA has zero power oscillations around GM which plays a vital role in in-

creasing efficiency. Duty cycle in Figures Shows the convergences of HGWOSCA

in fewer iterations along with its large exploration phase which effectively tracks

GMPP. Under the mentioned PS, the power tracked by HGWOSCA, GHO, PSOGS,

CS and PSO is 701.5W, 701.4W, 701W, 700.8W and 692W. Their efficiency is

99.9%, 99.84%, 99.82%, 99.82% and 98.58% respectively.

Figure 4.41: Comparative analysis of evaluation parameters for case 3
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4.6 Case 4: CPS Condition

4.6.1 Test Scenario of Case 4

In case 4, complex partial shading is presented with 8 PV modules connected in

series. The irradiance levels for case 4 is presented in Table 4.3. The power tracked

by HGWOSCA, GHO, PSOGS, PSO and CS is 921 W, 920.6 W, 910.6 W, 894.1

W and 851.9 W respectively with efficiency of 99.96%, 99.81%, 86.11%, 98.57%

and 98.64%.

Figure 4.42: CPS Condition PV curve

CPS condition is shown and it can be seen that there are two clusters. Cluster-1

exists in left half plane of P-V curve which contains three MPPs. From left - right

LM power is 738.3W, 901.4 W and 892.6 W which is the head maxima of cluster

1 whereas, in cluster 2, there are three MPPs.

Table 4.3: Irradiance pattern for case 4

Case Irradiance Si Pmax

Case 4

PV1:0.46 PV5:0.68 921.2 W
PV2:0.31 PV6:0.77
PV3:0.54 PV7:0.85
PV4:0.40 PV8:0.90
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4.6.2 Results of Case 4

The HGWOSCA tracks the global maxima in less time with high efficiency. Figure

4.43(a) shows the tracking of power under case 3 by HGWOSCA and Figure

4.43(b) shows the variation of the duty cycle for case 4. The evaluation parameter

achieved by the HGWOSCA is shown in Figure 4.44.

The maximum power in case 4 is 921.2 W and the power tracked by the HG-

WOSCA is 921 W which shows the high efficiency of the HGWOSCA under com-

plex partial shading conditions. The evaluation parameter of HGWOSCA for case

4 is shown in Figure 4.44 which shows that the tracking and settling time of HG-

WOSCA is 0.17 s and 0.26 s respectively. The efficiency achieved is upto 99.97

%.

Figure 4.43: (a) Power Tracking of HGWOSCA in Case 4 under CPS (b)
Duty Cycle Variation of HGWOSCA in Case 4 under CPS

In this PV curve for case 4, there are 12 peaks that have 2 clusters and every cluster

has cluster head maxima which is the GM of every cluster. However, the average

power of 1 cluster is higher than the other cluster. The conventional techniques are

unable to track GMPP but even the swarm intelligence-based MPPT techniques
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Figure 4.44: Evaluation parameter of HGWOSCA for case 4

like PSO, CSA are also unable to differentiate between the GMPP and LMPP in

CPS conditions.

Power tracked by HGWOSCA is shown in Figure 4.43(a) and the duty cycle varia-

tion is shown in Figure 4.43(b). The power tracked by GHO is presented in Figure

4.45(a) and duty cycle variation is is presented in Figure 4.45(b). HGWOSCA

shows higher efficiency as compared to GHO and has low tracking and settling

time which shows that under CPS HGWOSCA performs better as compared to

GHO.

Parameter “c” in GHO causess oscillations, which reduces the efficiency. The

effective tuning of parameter “c” is the biggest problem in GHO, which has to be

done very carefully for effective tracking. The power tracked by the GHO is 920.6

W, which is low as compared to HGWOSCA. The tracking time of the GHO is

0.35 seconds and the settling time of the GHO is 0.61 seconds. The evaluation

parameter of GHO for case 4 is shown in Figure 4.46.

Particle swarm optimization with gravitational search (PSOGS) is another tech-

nique that is implemented for the MPPT application. The PSOGS have low

oscillations as compared to GHO but have low tracking efficiency due to restricted

movement of the particle due to gravitational effect. The power tracked by PSOGS
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Figure 4.45: (a) Power Tracking of GHO in Case 4 under CPS (b) Duty Cycle
Variation of GHO in Case 4 under CPS

Figure 4.46: Evaluation parameter of GHO for case 4 in comparison with
HGWOSCA

is shown in Figure 4.47(a) and the duty cycle variation of PSOGS under varying

irradiance condition is shown in Figure 4.47(b).

Under partial shading condition random assignment of particles position occurs
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Figure 4.47: (a) Power Tracking of PSOGS in Case 4 under CPS (b) Duty
Cycle Variation of PSOGS in Case 4 under CPS

and the particle updation occurs due to PSOGS algorithm but the oscillations are

very low. The average power tracked by the PSOGS is 910.6 W, which is less than

GHO and HGWOSCA. The tracking time and settling time are 0.47 seconds and

0.71 seconds respectively. The oscillations of PSOGS after tracking of GM is very

low due to high exploitation behavior. The evaluation parameter of PSOGS for

case 4 is shown in Figure 4.48.

Levy flight function is one of the random walks, which are used in optimization

algorithm. Cuckoo search uses the levy flight function for updation of particles

position. Due to this levy flight function the particles are moving even after the

exploitation phase. Due to this oscillations can be observed after tracking of GM

and the efficiency of the CS based MPPT technique is reduced.

Power tracking capability of CSA is shown in Figure 4.49(a) and the variation

of the duty cycle is shown in Figure 4.49(b). The average power tracked by the

CSA is 851.9 W which is less as compared to GHO, HGWOSCA and PSOGS. The

average time taken to track and settle at GM is 0.29 seconds and 0.50 seconds
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Figure 4.48: Evaluation parameter of PSOGS for case 4

respectively. The high settling time validates that the CSA uses the levy flight

function for updation of particles position.

The evaluation parameters achieved by the CSA MPPT technique are shown in

Figure 4.50 which shows that the efficiency achieved by CSA is 93.25 %. The

efficiency achieved is very low as compared to HGWOSCA, GHO and PSOGS.

Particle swarm optimization uses the behavior of birds flock to locate the global

maxima in the optimization problem. The position updation of the particles in

PSO depends upon the velocity vector used which have random numbers em-

bedded. The parameters C1 and C2 are also required to tune for the specified

applications. PSO is one of the first swarm optimization algorithms presented

that’s why it is used for the comparison.

Particle swarm optimization algorithm shows high oscillations due to random num-

bers in velocity vector and the weight factor is used to control the movement of

particles. Figure 4.51(a) shows the power tracking of PSO under case 4 and Fig-

ure 4.51(b) shows duty cycle variation of PSO for case 4. The tracking time and

settling time achieved by PSO is 0.37 s and 0.59 s respectively. The efficiency

achieved by PSO is 97.05 %.
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Figure 4.49: (a) Power Tracking of CSA in Case 4 under CPS (b) Duty Cycle
Variation of CSA in Case 4 under CPS

Figure 4.50: Evaluation parameter of CSA for case 4

The tracking time, settling time and efficiency achieved by PSO is shown in Figure

4.52. The achieved efficiency is very low as compared to other MPPT techniques

while the tracking and settling time is also very high. SO, PSO is not a good

option for MPPT application.
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Figure 4.51: (a) Power Tracking of PSO in Case 4 under CPS (b) Duty Cycle
Variation of PSO in Case 4 under CPS

Figure 4.52: Evaluation parameter of PSO for case 4
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4.6.3 Comparative Analysis of Case 4

Tracking time of GM of HGWOSCA, GHO, PSOGS, CS and PSO is 0.17s, 0.23s,

0.41s, 0.41s and 0.38s. CS and PSOGS have equal tracking time but since PSOGS

is stuck within local maxima, it causes great loss of power.

Comparative analysis shows that HGWOSCA has a settling time of 0.25s, which

is 440ms less as compared to GHO. Performance comparison of these techniques

in the form of ranking can be represented as HGWOSCA > GHO > PSO > CS

> PSOGS > P&O. The efficiency achieved by HGWOSCA, GHO, PSOGS, CSA

and PSO is 99.97%, 99.93%, 98.84%, 93.25%, and 97.05% respectively. Perfor-

mance comparison of these techniques in the form of ranking can be represented

as HGWOSCA > GHO > PSOGS > PSO > CS > P&O. Settling time of GM of

HGWOSCA, GHO, PSOGS, CS and PSO is 0.26s, 0.60s, 0.71s, 0.50s and 0.59s.

The comparative analysis of the evaluation parameter for all MPPT techniques in

case 4 is shown in Figure 4.53.

Figure 4.53: Comparative analysis of evaluation parameter for case 4
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4.7 MPPT Rating

In this section, MPPT rating is calculated using Equation 4.1 as presented. The

factors used are the number of tuning parameters, number of random numbers,

the requirement of iter max for termination, average tracking time, average effi-

ciency, modification required in hardware for implementation, and the response of

variation in irradiance. These parameters are needed to be calculated for MPPT

rating.

MPPTrating = (Totalachievedrating)/7 (4.1)

MPPT rating is presented in Table 4.4 in which “1” shows the best and “4” shows

the worst. The conditions developed are presented below:

� For one tuning parameter, the rating is 1, two tuning parameter rating is

2, three tuning parameter rating is 3, and four tuning parameter rating is 4

and above for the number of parameters, a rating is 4.

� If the number of random numbers needed is zero then the rating is 1, for one

number of random numbers rating is 2, for three random numbers rating is

3 and for greater than three random variables the rating is 4.

� If the termination criteria iter max is met, then the rating is 2, and if it is

not, then the rating is 1.

� If the average tracking time is between 0-500ms then the rating is 1. If it is

between 500-750ms the rating is 2. If it is between 750-1000ms then it is 3

and for a rating greater than 1000ms, it will be 4.

� In a similar fashion, if the efficiency is between 99.5%-100%, the rating would

be 1. For 99%-99.5%, it would be 2. For 98.5%-99%, it would be 3 and for

efficiency of less than 98.5%, the rating would be 4.
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� If hardware modification is required for the implementation of MPPT then

the rating would be 2 and if not, then it would be 1.

� If the response to irradiance variation is less than 0.25s then the rating would

be 1, between 0.25s-.5s, the rating would be 2, between 0.5s-.75s, the rating

would be 3, and for more than 0.75s, the rating would be 4.

As depicted in Table 4.4, the HGWOSCA has the best MPPT rating of 1.142,

which suggests that IMFO can track GM at a much faster rate. Only one tuning

parameter is required for HGWOSCA in order to implement MPPT, which makes

it simple. Oscillations are also reduced because there is only one random number

involved in HGWOSCA.

The notations used in Table 4.4 are No. of tuning parameters: NTP, No. of

random numbers: NRN, Average tracking time: ATT, Average Efficiency: AE,

Modification required in hardware: MH, Response Time RT, Termination criteria:

TC

Table 4.4: Comparison of MPPT techniques for MPPT rating

Tech NTP NRN TC ATT (s) AE (%) MH RT (s) Rating

HGWOSCA 1 (1) 1 (1) No (1) 0.3411 (1) 99.89 (1) No (1) Fast (2) 1.142
GHO 3 (3) 1 (1) Yes (2) 0.3761 (1) 99.84 (1) Yes (2) Very slow (4) 2
PSOGS 3 (3) 2 (3) Yes (2) 0.5512 (2) 99.79 (1) No (1) Slow (3) 2.142
CS 1 (1) 2 (3) No (1) 0.7212 (2) 99.73 (1) No (1) Slow (3) 1.714
PSO 3 (3) 2 (3) No (1) 0.7408 (2) 99.62 (1) No (1) Very slow (4) 2.142

4.8 Efficiency and Performance Evaluation

Based on statistical analysis, the performance evaluation of HGWOSCA with other

competing techniques helps to understand common characteristics. We know that

conventional P&O is a comparatively faster and simple to implement technique
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Figure 4.54: Comparison of MPPT rating of competing techniques

because of gradient based control, however significant power loss due to oscilla-

tions under varying irradiances and trapping of LM makes P&O a non-desirable

technique.

On the other hand another technique, under PS, PSO has 100% efficiency in

locating GMPP but it offers a low power efficiency of 97%-98%. As seen in case

4, CS causes large fluctuations, which are not very desirable.

CS offers a high efficiency of up to 94%-99% but it takes almost up to 840ms

for CS to track GM. HGWOSCA tackles these shortcomings by overshooting its

minimum and its efficiency is as good as 99% under all operating conditions. Table

4.5 shows these results.

� HGWOSCA excellent tracking ability can be confirmed from case 1 which

shows that HGWOSCA performs better in the transient phase whereas in

case 2 and case 3, the power convergence efficiency of other techniques is

slightly low and GM is located successfully by bio-inspired techniques.
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� Steady state power is reduced in case of PSOGS, which attenuates the power

losses related to PSO.

� Case 4 and 5 shows that HGWOSCA can tackle CPS. In PSO and other

comparative techniques, their performances are compromised due to the fact

that random initialization is used even though they have located the GMPP.

HGWOSCA’s statistical analysis is presented in Figure 4.55.

� Robustness and sensitivity of all techniques inspected by mean, standard

deviation (SD), relative error (RE) by Equation 4.2, mean absolute error

(MAE) by Equation 4.3 and root means square error (RMSE) by Equation

4.4 [87].

ErrorRE = (Ppvi − Ppv)/Ppvx100% (4.2)

ErrorRE = (Ppvi − Ppv)/n (4.3)

ErrorRE = sqrt((Ppvi − Ppv)
2/n) (4.4)

Where Ppvi represents the power at STC, Ppvi the power tracked and n represents

the number of samples.

Statistical analysis of the competing techniques is presented in Figure 4.55 which

shows that HGWOSCA has low RMSE, MAE, and high success rate (SR). The

effective tracking and settling capability of HGWOSCA at GPP makes it suitable

for the implementation of MPPT technique.
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Figure 4.55: Statistical analysis comparison of competing MPPT techniques

Table 4.5: The electrical characteristics of TDC-M20-36 PV array module
[18].

Description TDC-M20-36

Power at MPP 20 W
Maximum Voltage 18.76 V
Maximum Current 1.07 A
Current due to short circuit 1.17 A
Voltage due to open circuit 22.7 V

4.9 Hardware Setup

In this section, experimental validation of proposed MPPT techniques is presented.

MPPT techniques are implemented on low cost microcontroller use to control the

duty cycle of boost converter which is interfaced with the PV emulator. The spec-

ifications of the PV module and components used for the experimental validation

is presented in Table 4.4.

In this experimental setup, the irradiance is changed from 950 W/m2 to 550

W/m2. The test scenario for the experimental setup is presented in Figure 4.57.

Experimental setup is shown in Figure 4.56. The specifications of the setup are

presented below:
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� ATmega 328 microcontroller is interfaced with MATLAB for data acquisition

of voltage and current sensor.

� MOSFET with low ON resistance is selected for higher efficiency and high

switching frequency Schottky diode is selected for the boost converter design.

� The detailed experimental setup is presented in Figure 4.58.

� Figure 4.59 shows the power tracked by PSO under fast varying irradiance

which validates that PSO takes 300ms to track the GM and 450ms to settles

at GM. While in comparison with PSO, HGWOSCA tracks the higher power

in 170ms.

� HGWOSCA settles at GM in less than 250ms causing less power loss. It

validates that HGWOSCA achieves high efficiency, with less tracking and

settling time.

� Proposed techniques show very low oscillations at the GM causing low power

loss at GM.

Figure 4.56: Experimental Setup for implementation of maximum power point
tracking control

Cost-effective implementation of the MPPT technique is an important aspect but

it depends upon the mathematical complexity of the technique. The competing

technique like grasshopper optimization algorithm (GHO) has complex random

walks like Levy flight and other complex functions which are very difficult to

implement on the low-cost microcontroller.
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Figure 4.57: Test scenario for Experimental Setup

Figure 4.58: Implmentation of the experimental setup

The microcontroller required for GHO is STM32 controller whose price is 3000

PKR, as HGWOSCA has very less complex functions and can be implemented on

Arduino NANO development board, whose price is 1100 PKR.

Therefore 3 times reduction in implementation cost can be observed. The experi-

mental validation was also done using a low-cost PV emulator.
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Figure 4.59: Experimental Results of Power Tracked by HGWOSCA and PSO

Figure 4.60: Evaluation Parameter for Experimental Setup

Figure 4.59 shows that HGWOSCA tracks higher power as compared to PSO

and also required less time to settle at GMPP. The higher efficiency and less

tracking time validate that the HGWOSCA MPPT technique is very effective for
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implementation in real-time applications or the PV system. So, we can used that

technique for MPPT control in real time applications for the PV system.

Table 4.6: Quantitative comparison of HGWOSCA with GHO, P&O, PSO,
PSOGS and CS

Tech. Case

No.

Tracking

Time (s)

Settling

Time

(s)

GM Lo-

cated

Power

at GM

Power

Tracked

(W)

Effie

(%)

HGWOSCACase 1 0.16 0.24 Yes 1282 1280 99.84

Case 2 0.15 0.22 Yes 335 334.7 99.91

Case 3 0.16 0.23 Yes 702 701.5 99.92

Case 4 0.17 0.26 Yes 921.2 921 99.97

GHO

Case 1 0.19 0.35 Yes 1282 1279.9 99.82

Case 2 0.16 0.51 Yes 335 334.6 99.88

Case 3 0.18 0.6 Yes 702 701.4 99.91

Case 4 0.35 0.61 Yes 921.2 920.6 99.93

P & O

Case 1 0.12 0.12 Yes 1282 1257 98.04

Case 2 LM LM No 335 239.4 71.46

Case 3 LM LM No 702 301.5 42.91

Case 4 LM LM No 921.2 500.1 54.28

PSO

Case 1 0.32 0.45 Yes 1282 1278.5 99.72

Case 2 0.3 0.75 Yes 335 334.5 99.85

Case 3 0.49 0.9 Yes 702 692 98.57

Case 4 0.37 0.59 No 921.2 894.1 97.05

PSOGS

Case 1 0.21 0.35 Yes 1282 1279.7 99.82

Case 2 0.27 0.5 Yes 335 334.4 99.82

Case 3 0.26 0.7 Yes 702 701 99.85

Case 4 0.47 0.71 Yes 921.2 910.6 98.84

CS

Case 1 0.35 0.55 Yes 1282 1278 99.68

Case 2 0.3 0.64 Yes 335 334.5 99.85

Case 3 0.31 0.72 Yes 702 700.8 99.82

Case 4 0.29 0.5 No 921.2 859.1 93.25
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4.10 Chapter Summary

In this chapter, the proposed MPPT technique is tested under different scenar-

ios which include fast varying irradiance, partial shading conditions, and complex

partial shading conditions. The comparison of the proposed technique is made

between GHO, CSA, PSO, and PSOGS. The MPPT rating is calculated which

verifies the superior performance of HGWOSCA. The proposed technique is also

validated experimentally. Statistical analysis is carried out to check the perfor-

mance of the proposed techniques.



Chapter 5

Conclusion and Future Work

In this chapter, a complete dissertation is summarized and future work is speci-

fied. The aim is to facilitate the research directions of interesting readers in the

field of MPPT control of PV systems using SI techniques. Chapter 1 provided

the introduction of renewable energy, utility, and future trends. Among various

renewable resources, the importance of solar energy in the form of photovoltaic is

established using technical data and projections. In chapter 2 a general review of

the PV System is developed. Its components are briefly introduced and the effects

of irradiance and temperature on the performance of the PV systems are studied.

Chapters 2 also discuss about the MPPT techniques used in the literature and

Chapter 3 present the contributions of the author in the field of MPPT of PV

systems. In chapter 4 the performance of proposed MPPT technique is validated

by simulating four different scenarios.

5.1 Contributions

The author contributed the following research work in this thesis

1. The importance of renewable energy is established and its significance is

highlighted. The effects of PS are conceptualized for a better understanding

of large-scale PV system power generation.

126
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2. Extensive literature review is presented in which conventional, mahine learn-

ing based and swarm intelligence based MPPT techniques are discussed.

3. In this work author developed soft computing-based MPPT technique for a

comprehensive comparison. A novel Swarm intelligence-based HGWOSCA

MPPT control is implemented on the PV system, which produced better

results as compared to particle swarm optimization (PSO), particle swarm

optimization (PSOGS), grasshopper optimization (GHO), and cuckoo search

algorithm (CSA) based MPPT techniques.

4. The outcomes verify that the proposed system has superior performance for

tracking GM and reducing oscillations around MPP. Tracking efficiency of

up to 99.9% and negligible oscillations are notable contributions in this field.

5. Proposed work is also implemented on Experimental Setup for the real-

time validation of the MPPT control technique whose results also validates

that the proposed MPPT technique can be implemented on the low-cost

microcontroller and can be used in real-time applications

5.2 Future Work

This thesis initiated the work in the field of MPPT of PV systems under PS

and CPS conditions by using the novel implementation of swarm intelligence-

based techniques. The expertise and learning obtained by research work in this

field highlighted several drawbacks and advantages in the field of PV systems

MPPT control. Specifically, field studies, complex partial shading, and hardware

components require much work to be done. There is a need to develop a standard

environment, better counter checks and comprehensive models of such systems.

Some future research directions are listed below

Complex partial shading will be studied further which shifts the entire GMPP

region vigorously. It needs to be addressed as the operating point of the MPPT

controller suddenly loses efficiency. CPS is yet another weather condition in which

multiple closely associated LM appear in a cluster. This situation lowered the
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efficiency and created a trade-off between computational power needed, time to

track GMPP and cost-effectiveness of MPPT controllers. The proposed technique

will also be implemented and integrated with the DC microgrid.
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